WIDTH.40 and_WIDTH.80

These coumands select 40 and
80 column modes on IIe and IIc only. HTAB
will not work past 40 columns (use POKE
1403,P0S as Apple recommends). Once a mode
is selected, it will be the default for the
TEXT command. HGR text will always be 40
colusns.

BRR.OFF Turns off ONRRR GOTO

HANDLE.RRR Turne off ONERR and fixes ONERR bug.
Should be used to start the module that
handles errors.
INDEX
&I, 7,.8,10,29 Library routines, see Modules, 13
Accelerator cards, 25 LisT, 5,9,41

Ampersand (&), 2,7,10,32
>vv—oncnn. 1,5,7,10,11

LLIST 5,10,41
Local variables, 27,28

Autonum, 9 LOOP-EXITWHEN-ENDLOOP, 11,39
BELL, 18,42 Memory useage, 2,32,33

BOX, BOXFILL, 17,41 MERGE, 13,41

Q>MN- —N-&O ZOQ:-OE. —N.~w.u@

CHAIN, 27.42
Character Editor, 35,36

‘COLLECT,
COMPILE,

Compiler, 1,25
Control structures, 2,6,39,40
DEFINR-FINISH, 5,39

Newsletters, 3
NORMAL, 16,40

20,42 PERFORM, 5,66,13,39
7,39 PRe, 5,10,19
PRINT.USING, 20,42
RAM drives, 25
RANDOMIZE, 20,42

DRL.ARRAY, 20,42 RENUM, 9,41

DISK, _m.»~ ' REPEAT-UNTIL, 12,39
DRAW.USING, §,17,40 Reset, 7,10

EDIT, 9,10.42 RESTORE.HERE, 15,42
Bditor, 2,4,5,7-10 REVERSE, 16,17,40

Errors,

Brror handling,
FILE, 13,41 20

20,30,31 SEARCH, 24,42
’ Self-addressed-stamped-envelope, 3
SHRINK/BXPAND/SHORTEN, 36,37

FLASH, 16
GET, 19,41 SORT, 21-23,42
GOTO, GOSUB, 7,9,11 SOUND, 18,42

Graphics, 2,4,16,17
Hardcopy, see PR#, see LLIST, 5

Structured prograsming, 2,3,11-15
Structured Prograssing Nith 8B8ASIC, 3,35

HGR, 16,40 SWAP, 19,42

HOME, 6,16,40 Tabs, 16

HSCRN, 18,41 TEXT, 6,7,16,40

INe8, 29 VBCTOR, 28,42

INKEY, 19,41 WHEN-BLSE-ENDWHEN 5,6,11,12,40
INLINE, 19,41 WHILE-ENDWHILE, 12,39

INSTRS, 24,41 WIDTH.40, WIDTH.80, 16,33,43
Interpreter, 1,25 Windows, 25-27

INVERSE, 16,40

453

No

GnkensHjp

BASIC

FOR THN APPSR [Iv, [le, [le, aad B&

copyright January 1984
by John Blankenship
(diskette and manual modified 1985, 1986, 1987)

P.O. BOX 47934 Atlanta GA 30362

part of this document may be reproduced in any form.

Apple and Applesoft are trademarks of Apple Computer Inc.

You may freely give unsltered copies of BBASIC to others
but
PLEASE do mot distribute this documentation.
I believe LOW prices are the way to beat piracy.
HELP PROVE ME RIGHT
CHAPTER TITLE PAGR
1 Introduction to BBASIC 1
2 Tutorial 4
3 The Bditor 8
4 Modular and Structured Programaming 11
5 Text, Graphics, and Sound 16
6 Faster and Rasier 19
7 Power Users 25
8 Hendling EBrrors 30
9 Technical Specifications 32
10 Other BBASIC Products 35
11 Commercial Programs 38
12 ry of Cosmands 39
DISCILAIMER
BBASIC has been thoroughly tested, but programs of this size and
complexity can always have errors. If you find an error you can
duplicate, please send me a diskette copy of your program (include your
Moquwosmen BBASIC) end a description of the problem and I will attempt
[x it.

I assume no responsibility for any damages, including lost profits or
other incidental or consequential damages, arising from the use of, or
fnability to use, BBASIC. My sole responsibility will be to replace
the product or refund the purchase price, whichever is appropriate.

It is possible that there will be updates, additions, and utilities
available for BBASIC. Information sbout these topics, as well as
belpful hints, can be found in the BBABIC newsletters. This update of

the manual
Registered

includes the information found im the first six newsletters.
owners cem receive free newsletters vn keeping a self-

addressed stamped envelope on file with me as described in Chapter 1.

COHAPTER 1
INTRODUOTION TO BBASIO

Congratulations on your purchase of BBASIC. It is one of the most
powerful and easy to use languages for the Apple II line of computers.
When the Apple was first introduced in the mid 70’s, there was only one
high level language available - Applesoft. Now, smore than a decade
later, the thoices are so numerous that it cen metimes be confusing.
As you begin your quest for the perfect language, you must first decide
if you want an interpreter or a compiler.

Interpreters (like Applesoft) are very easy to use because they are
interactive. You can make changes to your program and see the results
almost immediately. When an error occurs, an interpreter lets you
print the value of the variables to help you find the problenm. If you
grew- up on Applesoft, you probably take these things for granted.

A compiler is not nearly as friendly. The programming environment for
a compiler typically consists of aen editor, a compiler, an assembler,
and & linker. VYou start by creating your source code with the editor
and saving it to disk. When the compiler is run, it reads the source
file and creates an ASM file for the assembler. Once the asaembler is
loaded, it can translate the ASM file into relocatable object code.
Oply when the linker has finished its work will you have a machine
language program (that may be twice as large as the equivalent
interpreted version) that is ready to run. I[f an error occurs anytime
during the process, this lengthy sequence must be repeated from the
beginning.

After reading the above discussion, you might wonder why anyone would
choose a compiler over an interpreter. The answer is speed. Even
though it takes much longer to develop and debug a program using a
compiler, the final code often runs several times faster than an
interpreter version. After their first confrontation with a compiler,
though, many people decide that the time it takes a program to execute
is often far less important than the time it takes to write 1t.

DESIGN OBJECTIVES

After buying my first Apple computer and programming with Applesoft for
a while, I started looking for a programming language Lha! «ffered the
best features of both compilers and interpreters. I wanted to maintain
the interactive simplicity of an interpreter. Since Applesoft was
simple and widely used, I wanted as much compatibility as possible. 1
also wanted a modern structured language with NAMED procedures and
enough control structures to eliminate the nasty GOTO statement
entirely. Finally, I wanted a variety of new commands that would (1)
make programming easier and (2) increase the execution speed to the
point where an interpreter could be used for wany applications that
would normally require a compiler.

These objectives seemed very lofty when I first bought my Apple. By
1980, though, many of my desires were already available as Applesoft
ampersand extensions, so I knew my expectations were achievable.
Unfortunately, in order to satisfy even a subset of my goals, I would
have had to purchase numerous packages at $30 or $40 each. Even if I
chose to buy them, the packages would require most of the available
memory, and even if there was enough room for all of them, there would
almoat certainly be compatibility problems between them.

I finally decided that if I wanted the perfect Apple language, I was
going to have to write it myself. As I begen to design the language it
quickly became apparent that it would have to be more than a progras.
In order to achieve both power; and.simplicity, I needed a systes
capable of integrating meny utilities into..one compatible, easy to use,

4

package. Because of memory limitations, this new language would have
to be coded very efficiently and its capabilities chosen very
carefully. In order to further conserve memory, existing ROM routines
would have to be used whenever possible.

I decided to start with Applesoft and expand it using the ampersand
vector. The first step was to add modern control structures (similar
to those in PASCAL) to permit programs to flow more logically. Proper
structures not only make life easier for the experienced programmer
they also keep beginners from developing bad habits. Although my ’
control structures made designing programs easier, the aspersands
cluttered up the listings. To solve this problem I added an editor
that sutomatically trenslated each new command into its amspersand
equivalent. A new LIST command converted the commands for output and
formatted the listings. Since this process was totally invisible to
the user it provided a truly professional-looking way to expand, .
Applesoft.

I was 8o enthused with my new system that I wanted to add dozens of
additional features, but memory limitations socon forced me to pick my
extensions carefully. Although BBASIC could not be all things to all
people, I am very pleased with the final product. Here is a summary of
the features that made it to the present version.

GRAPHICS EDITOR

VTAB, HTAB, HOME, INVERSE 1. Autonum and Repum

PRINT, etc. work in HIRES 2. Insert and delete .
. DRAW.USING provides fast 3. List and edit proc- N
easy IBM type shapes. edures by name.

HSCRN determines if HIRES

points are ON or OFF.

. BOX and BOXFILL for HIRES

—

o WwoN

CONVENIENCE

1. PRINT.USING makes formatting easy.
°°=1>.—-—Q—F.—..—.< 2. RANDOMIZE provides a random seed.
3. INKBY and INLINE provide INPUT
1. Existing Applesoft programs LOAD alternatives.

and RUN normelly. HGRZ is the 4. SOUND and BELL aid your audio.
only command not supported. S. FREE newsletter availsble to

2. Veriable storage is 1dentical to registered owners.
Applesoft. (all local varisbles) 6. And all this is in one integrated

package. Quit trying to get one
one firm's editor to work with
another's sort or another’s.....

3. The 3.3 version works with DAVID
0OS, Diversi DOS, etc.

PERFORMANCE

Built in commands like SORT, SWAP
SEARCH, and INSTRS wseke programs

STRUCTURE

—

fast and progresming easy. 1. DEFINE and PERFORM named procedures
2. Procedure sddresses are compiled 2. REPEAT-UNTIL and WHILE-ENDWHILE loops
to decresse overhead. 3. Multi-line [F-THEN-ELSE-ENDIF WHEN)
3. CHAIN progrems of unlimited size. 4. Listings are indented automatically
4. Improved garbage collection. 5. Procedures may be FILED and MERGED

All of the above features fit into 8K of memory. That may not impress
you until you discover that your favorite editor or sort utility
requires 5K by itself. BBASIC doesn’'t use just any 8K of memory,
mwccur. Most of it resides below the HIRES screen in an area normally
inaccessible to Applesoft (when your program is moved asbove the
screen). This means you only give up 2K of memory to get 8K of new
code. And since BBASIC uses all of Applesoft as & subroutine, you now
have an 18K BASIC for your Apple.

STRUCTURED PROGRAMMING

Moduler design and modern control structures are very important
programming innovations. They make programs easier to design, debug,
051 maintain because they allow us to communicate with the computer
using the same terms we use for logicdl thinking. Poorly structured
systems force programmers to adjust. their thinking to match the limited
capabilitiea of the language. . “

The chapters that follow will examine each of the capabilities of

BBASIC. Since BBASIC is a highly structured language and because
structured programming requires a different philosophy, there will be
numerocus examples to aid you in your understanding. This manuel ise
not, however, designed to teach you how to progras. It assumes that
you are ressonably proficient with Applesoft. (All of the new BBASIC
cosmands are discussed, but none of the original Applesoft commands are
explained.) If you find you need more help (either because you are not
a programmer or because you find structured prograaming frightfully
unconventional), then you may want to purchase Structured Prograsming
With BBASIC as described in Chapter 10. It is available separately so
that purchasers of BBASIC have to buy only what they need. I am very
dedicated to making BBASIC available at the lowest possible price. As
a teacher, I am especially interested in providing a low cost solution
for schools that want to use a modern language without sacrificing
their investment in hardware.

ANSWERS TO YOUR QUESTIONS

This manual, like BBASIC, is very compact. Don’'t let the smasll size
fool you, though. If you take the time to read the entire manual, I
think you will find that it contains the answers to most of your
questions. Actually, the small size is a reflection of how easy BBASIC
is to use. If you have problems, you have several alternatives.
Registered owners of BBASIC are eligible for free newaletters. To
receive them, you need only send in your registration form and keep a
SELF-ADDRESSED STAMPED ENVELOPE on file with me. (I suggest you send
several at once. Place the number of each newsletter desired in the
lower left-hand corner and indicate the Jast one so you will know when
to send in additional envelopes.) [use the newsletters to provide
helpful hints and answer questions I feel will be of general interest.
Much of this manual (this is the 2nd edition) is a result of your
questions as it contains the information provided by the first six
newsletters. Drop me a note when you have a question and I'll try to
address it in the next newsletter. If you want an individual reply,
you must include a self-addressed stamped envelope.

I realize that occasionaslly you might have a question that needs an
immediate answer. After you have thoroughly examined the manual, feel
free to call me. My home number is 404-491-3151. Because of my
teaching schedule, [may or may not be at home. (BBASIC is far from
profitable enough to allow it to be my full time occupation.) If [am
not home, you can leave a 2 minute message on my machine. Briefly
describe your problem and offer two suggestions for when I can call you
back COLLECT. If I am home I will try to answer your question on the
spot. [f you catch me at a bad time, I may suggest a time for you to
call back. I regret that 1 can't offer full-time support, but my low
prices just don’t permit it. You can help increase my services by
encouraging your friends to become registered owners (see Chapter 10?.

Now that you have been introduced to BBASIC, let’s move along and
discover why BBASIC MAKES PROGRAMMING FUN AGAIN.

MAKE SURE
KEEP AN
ENVELOPE ON
FILE FOR THE
NEXT NEWSLETTER

YOuU

1

P

OHAPTER 2
TUTORIAL

C?

1 suggest that you read the entire ma ual before you use
NMMMmM?MMMM3¢»<@%ﬂ. { know that most people will tn:« to get started as
quickly as poasible. To that end, this chapter vﬂo<~nmu.m suamary of
the information that you are most likely to neefd. m<m4 if you are an
mxvoﬂwoanon programmer, I encourage you not to skip this chapter. It
sets the stage for things to come.

co of your BBASIC
different depending on
Both of

The first thing you should do is make a backu
master diskette. The exact procedure will be
whether you use 3.3 0D0S or ProDOS, so consult your DOS manual.
these versions of BBASIC look mlike to the user, but there are
significant differences inside the two programs.

THE BBASIC STARTUP MENU

when you boot your BBASIC master diskette, a menu will appear. The
first two choices in the menu allow you to select one of the two
versions of BBASIC that are on your diskette. The HIRES Graphics
Version allows you to use HGR and other HIRES graphics commands.
your application does not use any HIRES unmvrwmu. you may want to
choose selection 2. The non-graphics version 1s qu_wmn (mostly
because you don't need the HIRES screen), so you will have nearly 10K
of additional memory for your program.

When

Another option in the menu is DOCUMENTATION. It only vqomwamu a small
portion of the information found in this manual nd «xplains how BBASIC
can be ordered. Actually, this documentation could be more accurately
described as an advertisement. [believe in BBASIC and feel that
anyone that tries BBASIC will recognize its value. Because of my
confidence, I allow BBASIC to be freely given tnot sold} to vour
friends as long as you include my advertisement. You may not, however,
distribute the written documentation in any way. 1 amm.zan to use thas
innovative method of distributing BBASIC because [believe vou should
get to try software before you shell out your hard- earned money.

Please confirm my trust by encouraging your friends nn become
registered if they decide to use BBASIC. The na:<mqa_4=a~ mm_am of
BBASIC often fail to pay the advertising costs, so it is essential that
I receive secondary registrations in order to stay in business :and
provide future support). The first two years have cmm: verv
encouraging, so I look forward to many more. I appreciate the fact
that many of yvou have written to say that the newsletters alone are
worth the registration fee.

Another menu ites lets you transfer BBASIC to a previously _=—~mw~wumm
diskette. This is an easy way to let your friends try BBASIC. This
option only transfers the BBASIC system itself. It does not copy any
of the demonstration programs. The 3.3 DOS version of BBASIC has an
additional selection that will initialize a new diskette for you (and
transfers BBASIC). If you have ProDOS BBASIC you may RUN the program
PRODOS . DOCUMENT. It lists a few minor places where ProDOS BBASIC
differs from the 3.3 version.

JUMP RIGHT IN)
oot yvour BBASIC disk and choose Option 1 from the menu no,nmn into the
graphics version. ashing cursor appears, type in the
following line but do not press RETURN.

THIS IS A TBST .
Use the LEFT and RIGHT arrow keys to move the cursor along nva._dsn.
If you type a character, it will be INSERTED at the ncqnow.vou~n~o=
with the rest of the line shifting to the right. If you wish to delete
the character to the left of the cursor you can use CTL P (hold down

4

]

the control key and press P) or CTL Z. If you have a [le, IIc, or GS,
you may use the DELETE KEY. When you get the line the way you want it,
preas RETURN to send it to BBASIC. You do not have to have the cursor
at the end of the line. The entire line will be sent, no matter where
the cursor—is. Of course, if you press RETURN now, BBASIC will respond
with a SYNTAX ERROR since our example line is not a valid BBASIC
statement. If you wish to abort the line, press ESC. There are many
more editing features discussed in Chapter 3, but this will be enough
to get you started.

Type CATALOG (or CAT for ProDOS) and RETURN to see a list of programs
on your diskette. IF you press CTL F for FILES, the BBASIC editor will
type CATALOG for you. When the catalog appears, notice that one of the
programs is named NESTING EXAMPLE. The name will be NESTING.EXAMPLE on
the ProDOS disk since ProDOS does not allow spaces in a program name.
Load the program by typing in the following line.

LOAD NESTING EXAMPLE
Take a look at the program by typing LIST. If you press CTL L, BBASIC
will type LIST for you. You may start and stop the listing from
scrolling by using almost any key. I recommend the space bar. When
you have the listing in a pause state, you can abort by pressing either
ESC or RETURN.

HARDCOPY LISTINGS

If you would like a printout of this program (and you have a normal
printer interface in SLOT 1), type LLIST and RETURN. You ghould not
issue a PR#l. When you use LLIST, BBASIC will automatically turn on
the printer, LIST the program, and turn the printer off.

‘If you examine the listing you will see that most of the coamands look
like normal Applesoft commands. In fact, you may use every Applesoft
command except for HGR2. A few of these old commands have been
enhanced and act a little differently. The new LIST command, for
example, automatically forwats the program. Loops and WHEN (multiline
IF-THEN-ELSE) statements are indented to show their actions more
clearly. Defined modules (subroutines) are indented and separated by a
blank line. These modules begin with DEFINE, end with FINISH, and are
called with PERFORM.

You can also use the list command to begin listing the program at a
ecific module. Type in the following Tine.
LIST "HORIZ.BAT"
When you press RETURN the program will list starting with line 1500,
which 1s the first line of the module "HORIZ.BAT". The list will not
stop until the end of the program. Use the space bar and ESC to
control the listing as you see fit.

RUN THE PROGRAM

You run BBASIC programs just like you do with Applesoft. Type RUN now
to run the program previously loaded into memory. You should see a
short message telling you that the program will draw 4 types of
electronic components on your screen. It will also ask you how many
total components you want. Answer 25 and press RETURN. ou wi see
25 components drawn on the HIRES screen. At the bottom of the screen
will be the question DO YOU WANT TO SEEB IT AGAIN (Y/N)? Answer N to
end the program.

This program shows how easily BBASIC handles g¢raphics. Let’'s try a few
immediate mode commands to demonstrate this point. Type HOME to clear
the screen und position the cursor at the top of the page. Now type
the following line.
A$="RRIJJIIJJIIRR"
Although it will appear that you are in the text mode, remember that
the program ended with your Apple in the graphics mode and we have not
issued a TEXT commend. To prove your Apple is still in the graphics
mode type the following command.
HPLOT 0, [1) , 100
A line will appear on your screen.
DRAW.USING AS
DRAW.USING is a BBASIC command Yhat draws a shape specified by a
atring, in this case A$. Refer to our definition of A$ above. The R
indicates movement to the Rj t and I,J,K, and M are used for the

" Gwes)
s

Now type this statement.

===

EEEEEREEEERENRN

’l

e

These movements define At to be the symbol for a resistor.

diagona s hapter 5 for complete details on the DRAW.USING command.)

(Refer to C

i i tarts at the last point
the resistor appears on the screen it s t h
"ﬂnﬂnoa. which is the end of the line. The resistor will be very
Type in the following line. a
SLES TT DRAW.USING "2"+A$+"4"+A$+"B"+AS —> __ %.(rw\ :
i t the last poin
more resistors will appear. Each apnﬂnn.m 1
q"MMMoa and will be twice as large as the previous resistor. erm .
waclwnnuz in the string control the size of the shape. After a m. for
example, each R will move 2 dots to the right instead of 1. Type in
following line. i
the fo DRAW.USING "DDD LLL D uz=~ﬂ 4 th dia 4
is will draw a Ti own a little, an hen a diemond.
Hﬂm-lo<mlo=nu will be of size "8" because the default is the last size
used. The size may be from "1" to "9" and spaces are ignored so you
may use them to improve the readability of string.

small.

i with the DRAW.USING command before you
mxvaﬂ~“omnmn” the screen. (Notice that the BBASIC HOME
command works The TEXT and HIRES acreens.! <w= may use HPLOT
to determine where the shapes will appear. If you don't plot any
points after a OME, the shapes will start in the noanwn of nsm screen.
pon't feel intimidated if you feel that you need more information avonn
the DRAW.USING command. It has many additional noumcnmu and nqo<,t-——
all be explored later. Remember, the purpose of this chapter is Jjust
to get you started.

You may want to
continue. Type

STRUCTURES
MWMVWM”ﬂMWMWHﬂuo: a little sbout the DRAW.USING statement, _mn.u.—oor
at the program again and see how it works. qnmo waau mu>m—n :w_p.
automatically enter the text mode before the listing begins. This is
necessary because the text on the graphics screen cannot scroll. Look
at the listing (or at the hardcopy you made earlier).

i in_th rogram is COMPILE. It is always required in
The first command in e AT

ASIC program that uses PERFORM statements. /
“MHMWMW to Mvon>vv~onon» GOSUB statement except that you can PERFORM
named procedures instead of GOSUBing to line =:vawu. Names make your
programs much easier to understand. The readability of the program is
also improved because BBASIC provides modern control structures.
Control structures are used to determine the order nzmo program
statements execute. You should already be familiar with the >nv_muomﬁ
control structures FOR-NEXT and IF-GOTO. One advantage of having a
full complement of control structures is that the GOﬂo can be
eliminated completely. Two new structures are used in this program.

The first of these new structures is a REPEAT-UNTIL loop tvwnr m»mwnm
in line 1010 and ends at line 1220. \Notice that all the _1=mw in-
between are indented to make the body of the loop iwno obvious.
Everything in the loop will be repeated until A$="N".

Another new structure is the WHEN-THEN-ELSE-ENDWHEN. Look at the

example below.

100 INPUT X

110 WHEN X>100 THEN

120 PRINT "X is very large”

130 PRINT "In fact it is over 100"
140 ELSE

150 PRINT "X is less than 100"

160 ENDWHEN

If X>100 then lines 120 and 130 will be executed and everything between
the ELSE and the ENDWHEN will be skipped. If X<=100 then only the
lines between the ELSE and the ENDWHEN will be vaﬂnonlom.. H:n .
indenting makes it easier to follow the logic of this decision-making
structure. BBASIC will indent the lines properly no matter how you
enter them. The only time indenting will not be =n=amaa properly is
when a control structure is left out. (For example, if you had an
UNTIL without a REPEAT.) In fact, you can often discover 4:010 you
have forgotten a structure with only s quick look at the —munm=a. .~n
you forget an originating structure (like FOR), then the listing will

° _

be moved to the left toward the line numbers. The listing will drift
to the right when a terminating structure (like NBXT) is omitted.

BBASIC-AND THE AMPERSAND

As mentioned in Chapter 1, BBASIC uses the Applesoft ampersand (&)
vector to add the new comsands. Press RESET (CTL RESET on some Apples)
and then LIST our example program. You will notice that all the new
BBASIC commands have been replaced. COMPILE, for example, has become &
STORE. REPEAT is & CONT. BBASIC follows the & with standard Applesoft
key words so they can be tokenized to save memory space.

I only mention this because I don’'t want you to have a heart attack if
you press RESET and try to list your program. Normally, you will never
have to deal with anything but the BBASIC commands themselves. When
you type in a BBASIC command the BBASIC editor will automatically
convert it to its appropriate & version. When you LIST a progras,
BBASIC checks for &'s and converts each inatruction back to the more
readable fors.

Although Applesoft ignores spaces when it examines a line, the BBASIC
editor is not so forgiving. BBASIC commands will not be recognized (or
translated) if they contain imbedded spaces. If you type L IST, for
example, the editor will simply pass it on to Applesoft which will do a
normal list.

When you press RESET the BBASIC editor is disconnected and Applesoft’'s
editor takes control. Don't worry, though, as there are many ways to
put the BBASIC editor back in charge. Ooften, all you have to do is RUN
your progras. Since the & commanda do not require the editor to be
functioning in order to execute (only to be entered), they will operate
properly. Several commands (such as TEXT) reconnect the editor.

Your first thought wmight be that TEXT is an Applesoft command, not a
BBASIC command. Actually, TEXT was an Applesoft command, but if you
press RESET and use Applesoft to LIST line 1250 you will see that TEXT
is actually & new BBASIC command. The new command was necessary
because BBASIC needs to move between the 80 column, 40 coluamn and HGR
modes in a much more complicated manner than does Applesoft. In later
chapters you will see that there are several Applesoft commands that
will act differently if they are entered under control of the BBASIC
editor.

&I

Another way of returning to BBASIC after a RESET, is to type &1 and
press RETURN. This command will reconanect the BBASIC editor and leave
your program intact. You can tell which editor is in effect by looking
at the cursor. BBASIC's editor uses a flashing cursor, even on the
graphics screen.

APPLESOFT PROGRAMS

I wish to emphasize that you may LOAD Applesoft programs into BBASIC
and they will RUN properly (as long as they do not use HGR2). The only
difference you will see is that the BBASIC editor will be in effect for
INPUT statements and you can eliminate that by pressing RESET before
running your program. You must be very careful, though, if you use the
BBASIC editor to alter lines in an Applesoft program. Any BBASIC
command (such as HGR) will be converted to its ampersand equivalent and
the progrem will operate differently. (You will have nixed text and
graphics instead of the split Applesoft HIRES screen with four lines of
text at the bottom.)

BBASIC supports GOTO and GOSUB statements only to persit you to run
Applesoft programs. These statements should never be used when writing
new BBASIC progra

This chapter has provided only a brief encounter with BBASIC. The
purpose was to introduce you to the new environment as quickly as
poasible. Now that you know how to operate BBASIC you should have no
trouble digeating the rest of this manual.

CHAPTER 3
THE EDITOR

Many first-time users of BBASIC may find the editor a little unusual.
If you give it a chance, though, I think you will discover that the
things that seem the most peculiar at first will soon vono.a.uouo of
your favorite features. The reason for this is that BBASIC is very
different fros Applesoft. A structured environsent requires a new way
of thinking about programming. As you adapt to this new way of
thinking you will find that the BBASIC editor has been specifically
designed to sinplify modular programaing.

The BBASIC editor is always in effect. You may use it when entering a
new line or editing an old one. All of the features are available even
during normal INPUT statements. Here is a summary of the primary

editing commands.

CURSOR MOVEMENTS)
CTL B - moves cursor to the beginning of the line

CTL E - woves cursor to the end of the line
left arrow - moves cursor left one character
right arrow - moves cursor right one character
up arrow - moves cursor left five characters
CTL K - same as up arrow for II+ users
down arrow - moves cursor right five characters
CTL J - same as down arrow for IIl+ users

DELETING CHARACTERS

DELETE - erases character to the left of the cursor
CTL P - same as DELETE (the II+ does not have DELETE)
CTL Z - seme as DELETE (preferred by left handers)
CTL W - deletes the word to the left of the cursor

THROUGH

ETURN - sends the entire line to BBASIC ‘also used
Tto stop & LIST)

CTL Q - sends only the portion of the line that is
[eft of The cursor (quit at cursor)

ESC - aborts the present line without waking anv
changes (also used to stop a LIST, stop
EDITing, and to abort a long CATALOG)

CTL X - same as ESC (because Applesoft used ity

WHEN YOU AR

ENTERING CONTROL CHARACTERS

CTL V - Enters the next character typed, even if it
Is a control character (verbatim). Control
characters are displayed in inverse in the
text mode and as special characters in the graphics
mode. (Note: If you enter the monitor with a CALL-
151, you will have to use CTL V to enter a CTL C to
return to BASIC.)

The following characters have special meaning if they are typed as the
first character on the line.
SPACE - prints a RETURN so that a space will continue
a long CATALOG just like it always has with
Applesoft
ESC - Aborts a long CATALOG or a program LIST. If
used during INPUT it ends the program. (ESC
aborts most everything)
CTL I - types a new line number equal to the last line
nusber plus 1
CTL C - passes directly through editor to stop program
CIL E - tvpes EDIT for you
CTL L - typea LIST for you
CTL_F - types CATALOG for you (FILES)

INITIALIZATION

&I - reconnects the BBASIC editor after a RESET
8

P

~

)

L.
n
=
~

X

€ NUMBELING HATEMENTS

EDITING ve LISTING

One peculiar characteristic about the editor is that it will not list
one line for you. If you type LIST 100, for example, the progras will
begin listing at line 100 and coatinue to the end of the program. As
it turns o:ax you never need to LIST one line in BBASIC. Think about
this for a moment. The only reason that you ever listed a single line
with Applesoft was to ESC up to it and modify some portion of it. If
you wish to modify line 100 with BBASIC just ty EDIT 100 and the line
will be presented for you to modify.

I think the easiest way to learn anything on a computer is to try it,
so type in the following lines.

NEW

100 COMPILE

101 FOR I=1 TO 10
102 PERFORM "HELLO"
103 NEXT I

If you are like me, you hate typing in line numbers. BBASIC will type
the pext line number for you if vou press CTL I as the first character
on the line (or n a Ile, IIc, or GS). "Try it as you type in the

following lines.

104 END
105 DEFINE "HELLO"
106 PRINT "HI THEREB"

107 FINISH
4<MM“WWWH and notice that BBASIC has formatted the program to make it
ef to read. As you look at the listing, you are probebly wondering

why I increment the line numbers by 1. The answer won't be obvious or
perhaps even believable until you use BBASIC for a while and accept the
fact that line numbers have very little importance. They are only used
for editing. A praperly coded BBASIC program will pever use GOSUB or
GOTO so line numbers will never appear in the body of the program.

This Seans that e program can be renumbered by changing only the line
nusbers themselves. _Type RENUM and notice how quickly you get the
cursor back. Even ve€Ty large programs will renumber almost

>
2 ~=unn=nw1mo=u~<. List the program again. It should look like this.
&M 1000 COMPILE
1010 FOR I = 1 TO 10
1020 PERFORM "HELLO"
1030 NEXT I
1040 END
1050 DEFINE "HELLO"
NS 1060 PRINT “HI THERE"

. 'Vl 1070 FINISH

RENUM always astarts with the number 1000 to make sure the left side of
the lines will line up correctly. If we started with line number 10,
the listing would be out of line at 100 and again at 1000. RENUM also
always uses an increment of 10. For structured programs, that usually
will be plenty of space for inserting lines (especially with the auto-
increment of 1). If you find you need more space just RENUM nuJWMh

et e e s

Your first thoughts might be that you will never be able to keep track
of your line numbers if you are constantly renumbering. The nice thing
is that with BBASIC you don’'t have to keep track of your line numbers.
You will see in later chapters that properly designed programs will be
sade up of many small DEFINED modules. Let’'s assume that we want to
edit something in the module "HELLO". With Applesoft you would need to
know the line numbers so that you could list it on the screen. With

IC just type EDIT "HELLO". Do so now and you will see the first

or you to edit.

If the line needs editing you mey use any of the commands listed

earlier. When you are through (or if no changes are necessary), you

may press RETURN (or CTL Q) to enter the line. The next line will

automatically appear for editing. This will continue until you press
Gu might find this strange at Tirst, but T can almost

o

love Lines

guarantee that you will grow to love it in a very short time. The real
is that you no longer have to use line numbers when you edit

dvantage .

wo“” programs. (Note: EDIT will also work with a line number. You
will usually use this option when an ERROR is reported in a specific
line.)

LIST operates in 8 similar manner. You may LIST 1050 or LIST :1mkro:.
Both of these commands will start listing at line 1050 and continue

==d44|dﬁM\@=m of the program. Use the space bar to start and stop the
LIsST, and ESC or RETURN to abort the list (while it is stopped).

RESTRICTIONS))
The editor is responsible for converting new BBASIC commands into their
ampersand (&) equivalent. In order for this conversion to work
properly, there can be only one BBASIC command per line. ~n.<o: enter
two BBASIC commands on the same line then only one of them will be
converted. (You can still use the colon to separate multiple Applesoft
commands.) If you must use 8 BBASIC command and an_Applesoft command
on the same line, the BBASIC command must be the first statement on the
line or it will not LIST and indent properly. This simply means that
you should generally use only single statement lines in BBASIC
prograss. Actually, it is a good idea anyway because it makes the
program easier to read. A special utility is available (see Chapter
10) that can compress your program if you need more space.

Another restriction is that the BBASIC editor will only let you enter

vy iy

79 chaeracters per line. >nn=w—~<.nrwo-u=0l=nonou 1~0n—o=mn
you use only one statement per line. The only situation where you]
might require more characters is a long PRINT statement. When you find
it absolutely necessary to use more that 79 characters per line, you
can trick BBASIC into letting you enter them. To do so, type in your
line but do not leave a space between the line number and the first
character. When you hear the warning beep, indicating that the line is
full, press RETURN. Type HOME to clear the screen and then EDIT your
line. You will then be able to enter the same number of characters as
you can with Applesoft. The only problem you will have with this long
line is that it cannot be edited at the bottos of the screen (which is
why BBASIC tries to keep you from creating long lines). Doing so will
cause continuous scrolling. (If this occurs, just press ESC, type
:thPlbbhlhwhH\mww line at the top of the screen.) The reason for the
scrolling is that BBASIC does not edit on the screen. All editing is
done in the buffer and the line is printed over and over in the same
spot on the screen. This makes it possible for one simple subroutine
to handle editing for the 40 column, 80 column, and HIRES graphic
modes.

Since the editor continually prints to the screen, you must pever issue
a PR2]1 to turn on the printer while in the BBASIC immediate mode. Use
LLIST when you wish to get a hardcopy and alwayvs turn the printer on
and off inside your program with the DISK command (see chapter 6).

Sometimes you might need to turn on the printer while in the immediate
mode (to print a catalog for example). When you do, just press RESET
to return you to the Applesoft edito i PR#*]
finished, use e BBASIC editoar.

Occasionally, the BBASIC editor might conflict with DOS if a FILE name
contains a BBASIC reserved word (such as SORT). If this happens you
can RESET and then perfors your command. For example:

LOCK SORT.TEST
You can then use &I to reconnect the editor. Another way of avoiding
this problem (short of not using reserved words in file names), is to
use the DISK command in the immediate mode as follows.

DISK "LOCK SORT.TEST"

10

CHAPTER 4
MODULAR AND STRUOTURED PROGRAMMING

AN

If you have never used a structured language before, you may have &
little trouble adjusting to programming without using GOTO. Structured
programming is not just a way to write programs: it is a way of
thinking. 01d habits die hard, so don't get discouraged. Once your
mind makes the "flip" (and it will), you’ll wonder how you ever
organized a program using unstructured techniques.

MAKING DECISIONS

Let’s start by recognizing why GOTO commands are used in Applesoft.
The first reason is to create an IF-THEN-ELSE decision. The WHEN
control structure in BBASIC allows this to be done without a GOTO as
shown below.

Applesoft version BBASIC version

.y 10 IF NOT(X>Y) THEN 40 10 WHEN X>Y THEN
Qca 20 PRINT "X IS LARGER" 20 PRINT "X IS LARGER"
7 30 GOTO 50 30 ELSE
& 40 PRINT "Y IS LARGER" 40 PRINT "Y IS LARGER"
— 50 REM REST OF PROGRAM 50 ENDWHEN
if nrM/Aonwumoa following the WHEN is true, then all the lines between

the WHENAwill be executed and all the lines between the ELSE and the
ENDWHEN will, be skipped. If the decision is false, then only the lines
between the ELSE and the ENDWHEN will be performed. Not only can you
place as many lines between the WHEN and the RLSE (or ELSE and ENDWHEN)
as vou need, you can nest WHEN statements inside of each other. BBASIC
knows which ELSE and which ENDWHEN goes with each WHEN and will indent
the listing so that it is easy for you to read. Every WHEN must have

an ENDWHEN, but the ELSE is optional. The example prograss below show
two ways of making the same decision. See if you can find a simpler
way.
100 INPUT X,Y 100 INPUT X,Y
110 WHEN X>100 AND Y>100 THEN 110 WHEN X,>100 AND Y>100 THEN
120 PRINT "BOTH ARE BIG" 120 PRINT "BOTH ARE BIG"
130 ELSE 130 ELSE
140 WHEN X>100 THEN 140 WHEN X>100 OR Y>100 THEN
150 PRINT "ONLY X IS BIG" 150 WHEN X>100 THEN
160 ENDWHEN 160 PRINT "ONLY X IS BIG"
170 WHEN Y>100 THEN 170 ELSE
180 PRINT "ONLY Y IS BIG" 180 PRINT "ONLY Y IS BIG"
190 ENDWHEN 190 ENDWHEN
200 ENDWHEN 200 ENDWHEN
210 ENDWHEN
LOOPS

The only other reason for using a GOTO in a program is to create a
LOOP. If you think about loops, you will see that BBASIC has a loop
structure for every application. The standard FOR loop is perfect if
you know in advance how meny times the loop is to be performed. If you
want to loop WHILE something is true or UNTIL something happens then
you have several options. The WHILE loop decides at the beginning of
the loop and the REPEAT loop decides at the end. Paacal only has WHILE
and REPEAT loopa, so it maintains s GOTO in order to exit from the
middle of a loop. BBASIC can eliminate the GOTO entirely because it
has the LOOP-EXITWHEN-ENDLOOP construct to let you exit anywhere inside
the loop. VYou may even use several EXITWHEN statements if you need
them. The examples below show how BBASIC's loop structures can
eliminate the GOTO from similar situations in Applesoft.

11

=

BBASIC version

Applesoft version
eginning of program 10 REPEAT

MM zwzcwm" of 20 body of
30 ltoop 30 loop .
40 INPUT "AGAIN?"AS$ 40 INPUT »a>._.z<
50 IF A$="YBS" THEN 10 50 UNTIL As$="NO

NOT(X<Y) THEN 50 10 WHILE X<Y
MM tF cou% of 20 body of
30 loop 30 loop
40 GOTO 10 40 ENDWHILE
50 REM rest of program 50 REM rest of program
10 REM beginning of loop 10 LOOP
20 some of 20 some of
30 the loop 30 the loop
40 IF X=Y THEN 80 40 EXITWHEN X=Y
50 more of 50 more of
60 the loop 60 the loop
70 GOoTO 10 70 ENDLOOP
80 REM rest of program 80 REM rest of program

M, DEFINE, FINISH, COMPILE
MHMNMMMﬂMWMMOmmrw=n to a line number, BBASIC allows you to PERFORM a

Each procedure must begin with onﬂmm~zm "NAME"

nd end with FINISH. All characters in e name are
“W““MMM“MBM. but longer names do slow down nrm program slightly. Hn.
the name does not contain any Teserved words it does not have to
quotes, but I recommend them. Use a PERFORM "NA ° execute the
desired procedure {subroutine). The first statement in any wm>m—n
program that uses PERFORM should be COMPILE. Applesoft wo:a-unu you
for using subroutines because Applesoft searches the entire program .
for the specified line number. COMPILE causes BBASIC to create a table
of subroutines and their addresses. This makes PERFORM mmunuw than
GOSUB because a small table can be searched instead of an entire

program.

named procedure.

You generally should not use IF to decide whether to PERFORM a module
or not. The fgollowing line, for example, will operate correctly, but
it will not list properly.

"SOME MODULE"

2000

Enter IF xum THEN PERFORM

Lists as 2000 IF X=2 THEN & CALL "SOME MODULE"

A better way to handle this situation is with WHEN as shown below.

2000 WHEN X=2 THEN

2010 PERFORM "SOME MODULE"

2020 ENDWHEN
Another option is to use the CASE statement. The following line is
functionally identical to the examples above.

2000 CASE X=2; "SOME MODULR"
CASE . 14
CASE is actually such more powerful than the above exsmple wou
indicate. It is similar to the Applesoft ON X GOSUB statement. A~= the
following example, module A will be performed if X=1, module B will be
performed if X=2, etc. If X is less than one or more than the number
of modules, then no action is taken.

2000 CASE X; "A", "B", "C", "D"
MODULAR PROGRAMMING .
Modern control structures are only part of a well designed progras.
Structures are used to control the flow through a program by deciding
which parts are executed and how many times they sre repeated. These
“parts” of a program need to be organized into modules. Each module

12

should have one, and only one, well defined function. Poorly
structured programs are hard to design and debug because their logic is
distributed throughout the progras. Modular design lets you
concentrate your efforts on one problem at a time.

Wwhen you uvwvouns a programming problem, break it down into ssaller and
simpler problems (modules). If these new modules are still
complicated, just break them down into even smaller, easier-to-salve
modules. Let’s look at an example. Suppose we wanted to create a
program that would msove a ROBOT across the room to a door on the other
side. The main program could look like this.

1000 REPEAT

1010 PERFORM "LOCATE DOOR™
1020 PERFORM "FACE DOOR"
1030 PERFORM "MOVE FORWARD"
1040 UNTIL FLAG$="AT DOOR"
1050 END

The PERFORM statement is very much like Applesoft’s GOSUB except that
the subroutine can be called by ita name instead of a line nusber.
Notice how the use of modules makes the logic of this program easier to
understand. Naturally, we must clearly define the function of each of
these modules and write the code for them. If a module's function is
complex, then we can break it down into smaller modules. Let’s look at
the "MOVE FORWARD" module for example.

1060 DEFINE "MOVE FORWARD"
io70 PERFORM "CHECK FOR OBSTACLE"
1080 WHEN OK=1 THEN

1090 PERFORM "MOVE FORWARD 6 INCHES"
1100 ELSE
1110 PERFORM "GO AROUND OBJBCT"

1120 ENDWHEN
1130 FINISH

Naturally, we now have to create modules to solve these newly
introduced taskse. The new modules may also be complicated so we just
keep creating new solutions until the new tasks become simple enough to
code without defining new modules.

Since you only have to think about one module at a time, you can
concentrate your efforts without being distracted by related problems.
After you become accustomed to thinking about programming in this
manner, you will find that you will not only more productive but that
programming will be more enjoyable.

BUILDING A LIBRARY
As you learn to structure your programs, you will find that many of
your modules will be general purpose. Since it is undesirable to
continually re-invent the wheel, BBASIC provides an easy way for you to
maintain a procedure library. For example, you could save the “MOVE
FORWARD" module defined earlier with the command:

FILE "MOVE FORWARD”
File is similar To SAVE except that it only saves the module specified.

4““1”Mﬂ:ﬂdﬂlﬂlﬂﬂéddldddd_n to a program in memory with:
TT"MERGE "MOVE FORWARD"
Merged modules will aIways be wdded to the end of the existing program

no matter what line nuabers they have. After merging, you should RENUM
or you may not be able to EDIT some of n:ﬂlﬂdﬂdﬂ.

If you create a library of useful routines, you may wish to send them
to me (on disk please). When I get enough routines to fill a diskette
I will make them available at a modest price. [f 1 use any of your
routines you will get a free copy of the final disk. If you wish to
contribute please follow these guidelines. Use REM statements in your
module to define the function as clearly as possible. Specify what
vaeriables are used to pass data to and from your module. If a small
demo would be useful then please add one. If your module is called
“SCREEN BUILDER" then name the demo something like SCREEN BUILDER DEMO.
To help get you started let me offer a module for entering data. This
procedure could uase many enhancements, but it should give you some
ideas.

13

COMPI
HOME
sy= 3
READ

LE

PRINT "PLEASE ENTER THE FOLLOWING"

FOR I

=1TON

READ PROMPTS,SL$,SHS,SS

SX=
VTA
PRI
PER
8SY=
As$(
NEXT
PRINT
PRINT
FOR I
PRI
NEXT
DATA
DATA
DATA
DATA
DATA
DATA
EBND

DRFIN
REM
REM
RBM
REM
REM
REM
REM
REM
38$

LEN (PROMPTS) + 2
B SY
NT PROMPTS;
FORM "INPUT"
sY + 1
I)= SS$

: PRINT

"THE DATA IS:"

=1 TO N
NT AS(DI)
8
"YOUR NAME (ALL CAPS)--","A","2",15
"YOUR ADDRESS--","0","z",20
"CITY--","A","2",10
"STATE--","A","2",2
"ZI1P CODE--","0","9",5

B "INPUT"

This procedure will present an inverse field for input.

The user may specify the size of the field (38S),where the field

is to be located (SX,SY) and the upper and lower limits (SHS,SL$).
The input etring (including leading and trailing spaces) will be in
the variable SS$

Other variables used are SC$ (the char. being w=v=nv ST (a temp.
variable), SN (the number of characters entered so far), and SF (a
flag that indicates the RETURN key was pressed).
= "“:SF = 0:SN = 0

INVBRSE

FOR

ST = 1 TO S8

§5¢= SS$ + " "
NEXT
REPEAT
VTAB SY: HTAB SX
PRINT SS$;
SCs= ""
REPEAT

INKBY SC$

UNTIL 8C$ < > ""
WHEN ASC (SC$) = 13 THEN

SF= 1

LSE

WHEN ASC (SC$) = 127 OR ASC (SC$) = 8 THEN
SN= SN - 1

IF SN < 0 THEN SN = 0
WHEN SN = O THEN
um." "n
FOR ST = 1 TO 8S
5Sg= 888 + " "
NEXT
BLSE
WHEN SN + 1 = SS THEN
§8$= LBFTS$ (SS$,S5N) +
RLSE
S= LEFT$ (SS$,SN) + " " + RIGHTS (SS$,SS - SN - 1)
ENDWHEN
ENDWHEN
BLSB
WHEN (SC$ > = SL$ AND SC$ ¢ = SH$ AND SN < SS) OR SC$
WHEN SN > 0 THEN
WHEN SN + 1 = SS THEN
S89= LEBFTS (SS$,SN) + SCs
ELSE
888$= LBFT$ (SS$,SN) + SC$ + RIGHTS (SS8$,S88 - SN - 1)
BNDWHEN
BLSE 14

" " THEN

1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860

§Sg= SC$ + RIGHTS (SS5%,S85 - 1)
RNDWHEN
SN= SN + 1
ELSE
/ SBLL
ENDWHEN
ENDWHEN
ENDWHEN
UNTIL SF = 1
NORMAL
HTAB SX: VTAB SY
PRINT 8S$
FINISH

GIANT LETTERS

Another example of a useful library routine is the "GL LETTERS"
procedure in the GRAPHICS DEMO on your BBASIC master diskette. It
draws large letters for you in different sizes and colors. If you list
the program, you will see that it is actually more than one routine.

An

additional set of DEFINE-FINISH statements is used to coambine the

performable modules so that they can be merged and filed as one.

RESTORE.HERE

Stnce Tunctional modules are the basic building blocks of a BBASIC
program, it is important that each module be able to have its own DATA
statements. RESTORE.HERE tells BBASIC to begin looking for data
starting with fhe present line. T

Te

Shilnbiiupesto

Tt h SiWCLE UEN

Yoo Comeie
gio Home

g 20 VeERForz i ¢ File RAME

1W0eo JEF e (FUENAME
H

'
f

Floinid

“

o Aun FiBname Vi B Rou
v

16

rlllflll—i—l—l—l—l—l*l-l

CHAPTER B
TREXT, GRAPHIOS, AND SOUND

HGR, HOME

BBASIC has many improvements over Applesoft in the areas of graphics
and sound. One of the most advantageous of these improvements is the
ability to mix text and HIRES graphics on the same screen (as discussed
in Chapter 1). In order to handle mixed text and graphics more
equitably, BBASIC reacts differently to some Applesoft commands. HOME,
for example, clears the HIRES screen just as it does the TEXT screen.
Since 1 often want my programs to flip to a text HELP screen and back
to graphics, BBASIC's HGR does not clear the screen. HGR does however
set the color to 3.

When you are in the HGR mode you may use BBASIC's user-defined
character set (see Chapter 10 for more details). All of the control
characters have been defined as special characters. The GRAPHICS DEMO
on your BBASIC master diskette shows these characters. You may use CTL
V, as described in Chapter 3, to enter control characters into PRINT
statements. If you define several characters to be some shape (like a
apace ship, for example), you will find that the HGR PRINT is often
fast enough to handle simple animation.

WIDTH.40, WIDTH.80, TEXT, LIST

BBASIC supports two text screens (40 and 80 columns) on a [le, IlIc, or
GS. Do not use PR#3 to select the B0 column text as you do with
Applesoft. Inatead, use the commands WIDTH.40 and WIDTH.80. If you
are in the graphics wmode, BBASIC will automatically re Urn to the last
used text screen. The BBASIC TEXT cosmand also clears the screen.
Whenever you LIST a progras BBASIC will automatically perform a TEXT

(and HOMEY., This 18 Véry convenient since the HIRES S¢réén canno
scroll. In order to conserve memory, BBASIC uses Apple’s ROM code for

handling the 80 column screen. Unfortunatelv, the ROM rode has a few
bugs in it causing BBASIC to occasionally jump from the 80 column mode

to 40 columns or for the 80 column screen to clear. This only cccurs
if you are using the 80 column mode and is usually limited to immediate
mode sessions (like entering, listing, or editing a program). Although

it is a bit distracting, I have never lost a program because of it. arm
vyau get thrown into the 40 column mode just use TEXT or LIST to return

you to 80 columns’

vTAB, HTAB, NORMAL, INVERSE, REVERSE

All TAB commands work on the HIRES screen just as they do in TEXT.

(You have the same restrictions in 80 columns as you do with
Applesoft.) NORMAL and INVERSE also work on both screens. In fact, if
you are in the HIRES INVERSE mode, then HOME will clear the screen to

all white.
BBASIC has a new screen-control command called REVERSE. VERSE causes
any text that is printed on the HIRES screen to be the opposite of the

background. If you print on & white Screen, Tor example, e Tetlers
will be in black. White letters will be used if the background is
black. If you print a word (or even one letter, for that matter) such
that half of it is on a black area and half on a white area, then each
letter (or dot) will be of the appropriate color. This is very handy
for printing on an "unknown” screen because the text will always be
q”nnnv-u. You also won’'t erase any of the graphics by printing over
then.

You should not use FLASH when you mre in the HGR mode. It won't damage
anything, but you will get unusual characters. If you went flashing
letters while in the graphics mode, you can select REVERSE and print
the same text over and over in the same spot (using VTAB and HTAB).

16

You can use a dummy loop to control the delay (and thus the speed of
the flashing) between prints. This HIRES flashing will also occur if
you issue REVERSE in the immediate mode because the BBASIC editor
prints the line over and over as described above. If this heppens just

type NORMAL.

BROX, BOXFILL
BBASIC has commands for drawing boxes on the screen. BOX draws an open
box and BOXFILL creates a solid box. Both commands use the last color
specified. The syntax looks like this.

BOX X,Y,X1,Y1

BOXFILL X,Y,X1,Y1
X and Y are the coordinates of the top left hand corner of the box. Xl
and Y1 are the coordinetes of the lower right hand corner. Naturally,
you can use any variable or formula for each of the arguments.

DRAW.USING
The DRAW.USING command provides a very easy way to draw simple shapes.
(You may still use Applesoft shape tables if you need to rotate your
shapes, but I think you’ll like the ease, convenience, and speed of
BBASIC's shapes.) As discussed in Chapter 2, DRAW.USING allows you to
describe a shape with a string. The characters you may use in the
string are listed below.

Movement - move up
- move down
- move left
move right
- move diagonally up and right
- move diagoneally down and right
- move diagonally down and left
- move diagonally up and left

TR U=mDOOC
1

N - turns plotting on (leave trail during moves)
DRAW.USING slways starts in the N mode
F -~ turns plotting off (move without plotting)

On/Off

Size 1-9 indicates how many dots to move for each letter
Note: 1-9 must be characters (strings not numbers).

Spaces may be used as desired to improve readability.
Use HCOLOR before drawing your shape to set the color to be used.

Let's try an example. Suppose you wanted to draw a box with a diamond

inside it. Look at the example progras below.
1000 HGR) . R
1010 HOME Paite Jvrs

1020 A$ = "RRRRDDDDLLLLUUUU" -~ :
1030 B$ = "F JD N IJKM" wWiew =t

1040 C$ = "F JIR" .
1050 SYMBOL$ = AS+B$+CS$ Row
1060 HPLOT 1,1

1076 FOR J = 1 TO 9 -

1080 DRAW.USING STR$(J) + SYMBOLS

1090 NEXT :

1100 VTAB 20

e N

The first two lines select the graphics mode and clear the screen. The
string A$ draws the box. B$ turns the plotting off and moves to the
point where the diamond is to be positioned. The plotting is turned
back on and the diamond is drawn. C$ turns the plotting off again and
soves to the lower right hand corner of the box so that the next time a
shape is drawn it will begin there. Line 1050 combines the pieces into
one easy-to-use "shape" variable. The HPLOT determines where the first
shape will begin. The FOR loop draws nine shapes. The first shape
will be of size 1, the second of size 2, etc. Notice that the variable
J must be converted to a string before it can be used to control the
size of the shape. The final line in the program moves the cursor to
line 20 so that it will not interfere with the drawing when the programs
ends.

17

EEEEEEEREREEEEIN

BELL and SOUND
You may use the BBASIC command BELL to beep the speaker. BELL is not
really any easier than printing a CHR$(7), but it makes a more readable

‘progras.

iIf you want a more pleasant tone than BELL provides or if you need
interesting sound effects, you can use the SOUND command. SOUND has
the following syntax.

SOUND D,F,B
D is the duration and can have value of 0-127. The frequency of the
tone is controlled by the second argument which may range from 1 to
191. Changing the frequency will have no effect on the duratiom. For
normal tones, the last argument (effect) should be 0. You can use E
(1-255) to create unusual sounds. The best sounds seem to have
effects near the extremes (1 or 265). Experiment with SOUND and you
will see that you can get lasers, machine guns, etc. The following
progras will demonstrate some of the possible sounds.

1000 FOR J = 1 TO 6
1010 READ E

1020 DATA 0,1,3,10,253,255
) 1030 FOR F = 1 TO 191 STEP 30
N 1040 PRINT: PRINT "F=";F;" E=";E

méA;u* 1050 SOUND 60,F,§
1060 FOR I - 1 To 200
1070 NEXT I
1080 NEXT F
1090 NEXT J

et

HSCRN

The HSCRN command allows BBASIC programs to determine if a given dot
positign on the ES screen is off or on. The syntax is:

'x,Y,2

orm dot are X,Y. After the coamand is exectued the
will be 1 if the dot is op and 0 if it is of f.

The coordinestes
REAL varisble

18

CHAPTER 6
FASTER AND EASIER

In addition to modern control structures and mixed text and graphics,
BBASIC has many new commands that either make programaing easier, or
your programs run faster, or both.

SWAP

Applesoft normelly requires you to use three statements and a temporary
variable if you want to awap the value of two varisbles. The SWAP
command is not only eesier for you, but it is considerably faster. If
you need to exchange the value of X and Y use SWAP X,Y. Naturelly, you
can swap integers or strings just as easily.

DISK

One of the most unsightly things about handling DOS commands in
Applesoft is the required use of CHR$(4). BBASIC solves this problem
by replacing PRINT CHR$(4); with DISK. For example, you can get a
CATALOG from inside your program with:

1000 DISK "CATALOG"

DISK aleso allows you to turn the printer on and off inside your
progrem. This is necessary because (as stated in chapter 2) you should
never use PR#] as an immediate command. The example below shows how to
let the user decide if the output should go to the screen or to the
printer.

2000 INPUT "Screen or Printer (S/P) ";AS

3000 WHEN A$="P"
3010 DISK "PR#1"
3020 ENDWHEN

print statements in program

4000 DISK "PR#0"

INKEY, GET
Applesoft progremmers are familiar with the GET statement. BBASIC's
INKBY is very similar to GET except that INKRY does not stop and wait
for an input like GET does. If no key has been pressed, then INKBY
does nothing. If @ key has been pressed, then INKRY acts exactly like
GET. As with GET, INKEY should only be used with a atring variable.
The following example will print periods on your screen until the K key
is pressed.

2000 As=""

2010 REPEAT

2020 PRINT ".";

2030 INKRY AS

2040 UNTIL A$="R"

The BBASIC GERT is slightly different from Applesoft’s GET. It looks
the same to the user except that it no longer works with disk files.
Many people have used GET to read a text file that contains quotes and
commas. With BBASIC you can accomplish the same thing much faster with
INLINE. See the example below.

INLINE

The Applesoft INPUT command does not let you enter such characters as
quotes (") or commas (,). INLINE works like INPUT except that it

19

EEEERERERERERER

. K

allows any character (except RETURN) to be entered. INLINE should be
used only with a string variable. The example below shows how to print
a sequential text file that may contain quotes or commas.

1000 INPUT "WHAT FILE NAME ";F$
1010 ONERR GOTO 60000

1020 DISK "OPEN ";F$

1030 DISK "READ “;F$

1040 LOOP

1050 INLINE As

1060 PRINT AS$

1070 ENDLOOP

1080 END

ﬂ e

60000 HANDLE.ERR

60010 DISK "CLOSE"

60020 PRINT "ALL DATA READ"
60030 END

Note: Refer to Chapter 8 for more information about the use of ONERR.

PRINT.USING

BBASIC's PRINT.USING command makes the formatting of numbers very
easy. A string or string variable is used as a mask which specifies
how the output should look, es shown below.

PRINT.USING "$#4#.00";2.5 or X = 2.5
. MASKS = "$##8. 88"
PRINT.USING MASKS$:X

The example masks and outputs below show the various capabilities.
Assume the number being printed is 23.058.

MASK and NUMBER OUTPUT COMMENT

"SRR .887;123.45 123.45 use # as place holders
"ese.80";23.057 23.06 notice rounding

"s48.48"; . 057 . 6 leading 0's are suppreassed
"¢88.00";.057 .06 keep 0's if you want
"#40.00";.057 0.06 keep 0's if you want
"$88828.00";12 $ 12.00 $ at beginning of field
"#8888.00";12 $12.00 ¢ floats to front of number

"ANSWER=##.00":6.2 ANSWER= 6.20
"848 . 84" ;12345.67 22880

strings may be used
shows number won't fit

The # syabol is used to indicate where the number should go. When the
program is run though, the # signs will be replaced with spaces.

DEL.ARRAY

If you need to erasse (not just set the velues to zero) an array from
memory, you can use the command DEL.ARRAY. This is helpful if you no
longer need the array or if you wish to redimension it.

RANDOMIZE

The Applesoft RND function cen be used to generate random numbers. It
produces each number by applying a formula to the last number. The
initial number in this sequence is called a seed. Unfortunately, when
the Apple is turned on, it always starts with the seame seed. The
BBASIC command RANDOMIZE solves this problem by using the time taken to
press the last key to generate a random seed. GQenerally, you should
only execute the RANDOMIZE command once in each programs.

COLLECT

Applesoft (and thus BBASIC) dynamically allocates the memory used to
store strings. This is good because it means that the minimus amount
of memory is always used. This process does, however, have its
drawbacks. In particular, dynamic allocation requires some memory to
be set aside for temporary use. These temporary strings, which are
often called garbage, continue to expand into any available memory.
When the memory is full (or if your program needs the memory for its
variables), then the string space must be reorganized and the temporery
strings thrown away. This reorganization ie affectionately called
garbage collection. Applesoft uses a very inefficient algorithm for

20

garbage collection, so the process can take many mjinutes under some
cicrcumstances. The BBASIC cosmand COLLECT will collect garbage much
quicker than Applesoft.

ProDOS offers its own fast collection process. (Refer to your DOS
sanual.) Rather than duplicate code, ProDP0S BBASIC uses the ProDOS
collection process when you use COLLECT. Most of the new code required
for ProDOS BBASIC fits in the area originally set aside for COLLECT.
This allows both DOS versions of BBASIC to occupy the same amount of
memory and to have identical starting points for the major subroutines.

SORT

The BBASIC SORT command is both fast and convenient.
one or two dimensional arrey (integer, string,
where X is the name of the name of the array.

You may sort any
or real) by using SORY X

All sorts are in ascending order, but it is easy for the programmer to
simulate deacending order. If you have an array A$ with elements O-N,
for example, you could sort it and print it out in descending order as

follows.
2000 SORT AS$
2010 FOR I = N TO O STEP -1
2020 PRINT A$(1I)
2030 NBXT I

Notice that SORT uses the 0 element, not just 1-N. It is also
important to know that BBASIC sorts the eptire array. If you have
dimensioned an array to 100 and use only 25 of the elements then the
remainder of the array (which will contain 0’s or null strings) will be
sorted right along with the actual data. Generally, this will mean
that your data will end up at the end of the array. This may seem like
a large problem, but it is actually very easy to solve. One of the
easiest solutions is to fill the array with esomething that will appear
very large to SORT. The largest number Applesoft can handle is
approximately 1.7B+38 so that works well for numeric arrays. With
strings, initialize each element to CHR$(255). If you are having
trouble with the SORT coamand, study the example below.

1000 COMPILE

1010 SIZE=100: DIM A(SIZR)

1020 REM now fill the array with large number
1030 FOR I= 0 TO SIZE

1040 A(I) = 1.7 E+38

1050 NEXT

1060 PERFORM "INPUT ARRAY"

1070 HOMEB

1080 PRINT "BEFORE SORT":PRINT

1090 PERFORM "PRINT ARRAY"

1100 SORT A

1110 PRINT:PRINT "AFTER SORT": PRINT

1120 PERFORM "PRINT ARRAY"

1130 END

1140 DEFINE "INPUT ARRAY”

1150 TRXT

1160 PRINT "ENTER NUMBERS TO BR SORTED (RETURN WHEN DONE)"
1170 PRINT

1180 N = 0: REM number of names entered so far
1190 LooP

1200 INPUT X$

1210 RXITWHEN X$="°"

1220 A(N)=VAL(XS)

1230 N=N+1

1240 BNDLOOP

1250 N=N-1

1260 REM the numbers are in A(0) through A(N)
1270 FINISH

1280 DRFINE "PRINT ARRAY"

1290 FOR 1=0 TO N

1300 PRINT A(I)

1310 NEXT

1320 REM note: NEXT is faster without a variable
1330 FINISH

21

SEEEREE R R EEEREN

Generally, you will find the BBASIC SORT 30 to 60 times faster than
comparsble Applesoft sorts. Even so, you can obtain even greater speed
by using BBASIC’s ability to sort two dimensional arrays. When a two
disensional array such as A(X,Y) ls used, X is the column number and ¥
is the row mumber. The array is sorted by the first column. Rach time
olemonts are moved, everything in the entire row is moved. The
elements in the row could be name, address, city, state, zip, etc.

The program below shows how to use the two dimensional SORT.

1000 COMPILE
1010 TRXTY
1020 DIM A$(3,2)
1030 PERFORM "READ.DATA"
1040 PERFORM "PRINT.DATA"
1050 PERFORM "SORT.DATA"
1060 PERFORM "PRINT.DATA"
1070 END
1080 DEFINE "READ.DATA"
1090 RESTORK. HERE 2
1100 FOR I = 0 TO
1110 READ A$(0,I),A$(1,I),A8(2,1),48(3, 1)
1120 NEXT
1130 DATA JOHN,37,160,BROWN
1140 DATA SUSAN,24,115,BLOND
1150 DATA TOM,28,175,BLACK
1160 FINISH
7 DEFINE "PRINT.DATA"
“Wc” PRINT "NAME AGE WERIGHT HAIR QOFOHH
1190 PRINT "--------- it
1200 FOR I = 0 TO 2
1210 PRINT A$(0,1);
1220 HTAB 8: PRINT A$(1,1
1230 HTAB 14: PRINT A$(2, .
1240 HTABD 23: PRINT A$(3, o
1250 NEXT
1260 FINISH
1270 DEFINE "SORT.DATA"
1280 PRINT
1290 PRINT “SORT USING WHICH COLUMN?"
1300 PRINT ° 1. NAME"
1310 PRINT " 2. AGR"
1320 PRINT " 3. WRIGHT"
1330 PRINT " 4. HAIR COLOR"
1340 PRINT
1350 INPUT "ENTER NUMBER OF YOUR CHOICE “;C
1360 c = ¢c-1
1370 PRINT
1380 FOR I = 0 T0 2
1390 SWAP A$(0,1),A$(C,1)
1400 NRXT
1410 SORT AS$
1420 FOR [= 0 10 2
1430 SWAP A$(0,1), As(C,I)
1440 NEXT
1450 FINISH

Sometimes (especially with disk files) it is better never actually to
move the data. Instead, a system of pointers can be used to keep track
of the desired order. The simple program below shows how pointers can
be used to manage six students snd the grades they msde on four tests.

22

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110

1120
1130
1140
1150
1160
1170
1180
1180
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340

1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540

1550
1560
1570
1580
1690
1600
1610
1620
1630

COMPILE
PERFORM "RBAD.DATA"

TEXT
PRINT "BELOW ARE THE UNSORTED NAMES AND GRADBS"

PRINT

PERFORM "PRINT.DATA"
SORT NAMES

PRINT

PRINT "USING POINTERS MEANS YOU NEVER MOVE THE DATA"

PRINT
PERFORM "PRINT.DATA"
END

DEFINE "READ.DATA"

RESTORB . HERE

READ NS

DIM NAMES$(1,NS-1)

FOR SN = 0 TO NS-1
READ NAMES$(0O,SN)
NAME$(1,SN) = STR$(SN)

NEXT

READ NT

DIM G(NS-1,NT-1)

FOR TN = 0 TO NT-1
FOR SN = 0 TO NS-1

RBAD G(SN,TN)

NEXT

NEXT

DATA 6

DATA SMITH,JONES,BLANKENSHIP,MILLS,BLACK,WILLIAMS

DATA 4

DATA 66,75,85,82,91,81

DATA 72,73,89,80,96,78

DATA 53,79,81,90,100,92

DATA 78,71,86,79,94,83
FINISH

DEFINR "PRINT.DATA"
PRINT "NAME "
FOR I = 1 TO NT
PRINT " TT"I;
NEXT
PRINT: PRINT
FOR SN = 0 TO NS-1
WHEN LEN(NAME$(0,SN)) >= 10 THEN
PRINT LEFT$({NAMEBS$(0,SN),10);
ELSE
PRINT NAME$(O0,SN);
PRINT SPC(10-LEN(NAMES$(0,SN)));
ENDWHEN
FOR TN = 0 TO NT-1
PT = VAL (NAME$(1,SN))
PRINT.USING "##8#";G(PT,TN)
NEXT
PRINT
NEXT
FINISH

DEFINE "VARIABLE DOCUMENTATION"

REM NS - number of students

REM NT - number of tests

REM SN - student aumber

REM TN - test number

REM PT - pointer

REM G - array for grades

REM NAMES - array for names and pointers
FINISH

23

SEARCH

When you need to search an array with Applesoft you have to use a loop,
which can be very time consuming. BBASIC provides an extremely fast
SEARCH command for searching arrays. SEARCH N,X,B,C means to search
for the Nth occurrence of X in the array B (integer, string, or real).
If no match is found, then the real variable C will be set to -1.
Otherwise, C is equal to the position im the array that X was found.
The module below shows how to list all occurrences of a user specified
string in the array AS$.

2000 DEBFINE "PRINT.ALL"

2010 INPUT "SBARCH FOR WHAT ";X$
2020 N=1

2030 REPEAT

2040 SEARCH N,X$,AS$,P
2050 If P>-1 THEN PRINT "FOUND AT ";P
2060 N = N+l

2070 UNTIL P=-1
2080 FINISH

When searching a string array, the second argument in the SEARCH
command sust be a string varisble (and not a formula or a literal
string). This restriction does not apply to numeric arrays.

INSTRS

The INSTR$ command lets you search one string for the occurrence of
another. INSTRS N,X$,B8,C searches for the Nth occurrence of X$§ in BS
and sets the real variable C equal to the character position found. C
will equal 0 if not found. The progrem below lists the individual
words in a user provided sentence by looking for the spaces.

1000 SPACES$ = " "

1010 INPUT "ENTER YOUR SENTENCE “;X$
1020 Pl=1

1030 N=1

1040 REPEAT

1050 INSTR$ N,SPACES,Xs$,P2

1060 WHEN P2>0 THEN

1070 PRINT MID$(X$,P1,P2-Pl)
1080 Pl = P2¢1
1090 N = N+l

1100 ENDWHEN
1110 UNTIL P2=0
1120 PRINT RIGHT$(XS$,LEN(XS$)-Pl+l)

24

CHAPTER 7
POWER USERS

A number of BBASIC owners have written to ask for a BBASIC compiler. 1
thought about it for a while, but (at least for now) I have decided
against it. It’'s not that a compiler wouldn’t be nice, but the

speed gained doesn’t appear to be worth the effort required. This is
especially true with BBASIC (as indicated in chapter 6).

First of all, I prefer the interactive environsent of an interpreter
(as discussed in Chapter 1) over a compiler. Second, and perhaps even
more important, you don’t necessarily need a compiler to create
programs with professional speed. This is true because BBASIC can
perform many of the most needed functions many times faster than
compiled code. BBASIC’'s SORT, SBARCH, INSTR$, and DRAW.USING are prime
examples. These commands perform their operations 30 to 100 times
faster than equivalent Applesoft code. Compiled Applesoft only gives
you speed increases of 2 to 10 times, with the average closer to 2 than
10. This often means that interpreted BBASIC programs run much faster
than programs written with a compiler. Further, the compiled progranme
generally will take much longer to write and debug and often will
require considerably more memory.

IMPROVING YOUR HARDWARE

If you really want maximum performance from your system, I have several
suggestions for you. First, unless you have a GS, you should purchase
an accelerator card. [have an Accelerator lle from Titan Technologies
and 1 am very satisfied with it, although there are several new ones on
the market with additional features. I have never found any programs
that wouldn’t run with it, and they run three times as fast. Many
Applesoft compilers don't offer that much speed increase. And a
compiler will only speed up your BASIC progrems. An accelerator card
will speed up wordprocessing, graphics, spreadsheets, everything!

Study the accelerators on the market and buy one of them. You'll get a
300X increase in power for only a 15% incresse in your investment.

The accelerator won't increase your disk speed, though, because DOS
commands are automatically slowed down to the normal clock speed
(required by DOS). If you are using 3.3 DOS you can speed up disk
access by as much as 500X by upgrading to ProDOS or by using one of the
fast 3.3 DOS's such as DAVID DOS or Diversi-D0S. If you have a hard
disk or a 3.5 inch disk, then ProDOS is & logical choice because of its
subdirectory environment. Otherwise, I prefer DAVID or Diversi because
they not only give you the same speed as ProDOS, but they are capable
of moving themselves into the language card, freeing up an additional
10K of memory for BBASIC. An accelerator and a fast DOS will make you
think you have s new machine: but why stop there.

If you really want to see your Apple fly, add a RAM disk to the above
configuretions. ProDOS users have one built in. Otherwise, you will
have to add special hardware, software, or both. You will find the
speed to be astonishing. An accelerator and a fast DOS can BLOAD HIRES
screens from the RAM disk so fast you can almost perform animation.

WINDOWS

After you have built your SUPER Apple (accelerator, fast DOS, and RAM
disk), you will be able to do things with BASIC that you might never
have considered before, For example, you may have seen windows on the
MAC and wanted to use them in your programs. You may have thought
about spending & couple of weeks writing s machine language module to
handle the task. You might have even seen such routines in your
favorite magazine, but they probably only handled: windows on the text
screen. The reason for this is that HIRES windows not only require
high speed to move 8K of memory, they alsc need a place to put it.

26

Since each window takes 8K, you may run ocut of memory very quickly if
you open several windows et once. When you realize that your program
will also have to manage output from PRINT statements to the WINDOWS,
etc., you may put the idea aside, assuming it would be too much
trouble.

With s SUPER Apple, you don’t have to resort to machine language. I
was able to develop a wimple BBASIC windowing syetem in less than an
hour. The number of windows open at any time is lisited only by your
(RAM) disk space. When each window is closed, the previous screen is
restored oxactly as it was. Bven the cursor is returned to its
original position. The following program demonstrates my windows.
FILE these routines on your librery diek and MERGE them into your
programs whenever you need windows.

1000 COMPILR

1010 HGR

1020 HOME

1030 WNUM= 0

1040 PRINT "Windows Demo”: PRINT

1050 INPUT "HOW MANY WINDOWS TO OPEN ";N
1060 FOR I =1 TO N

1070 INPUT “"WL,WR,WT ,WB " WL,WR,WT,WB
1080 PERFORM "OPEN WINDOW"

1090 PRINT "THIS IS WINDOW NUMBER ";
1100 “INPUT "PRESS RETURN TO CONTINUE";AS$
1110 NBXT

1120 FOR I =1 TO N

1130 INPUT "PRESS RETURN";AS$

1140 PRRFORM "CLOSE WINDOW"

1150 NEXT

1160 END

1170 DEFINE "WINDOW ROUTINEBS"

1180 DEFINE "OPEN WINDOW"

1190 POKE 17362,165: POKE 17363,34

1200 WNUM= WNUM + 1

1210 REM save vital information

1220 FOR W = 0 T0 5

1230 WSIZE(W,WNUM)= PEEK (32 + W)

1240 NEXT

1250 DISK "BSAVE WINDOW#";WNUM;" ,A$2000,L$2000"
1260 REM create new window

1270 HCOLOR= 0

1280 BOXFILL WL ¢ 7,WT % 8,WR % 7,WB & 8

1290 HCOLOR= 3

1300 BOX WL » 7 ,WT & 8,WR & 7,WB * 8

1310 BOX WL % 7 + 3,NT ¢ 8 + 3,WR & 7 - 3,WB ¢ 8 - 3
1320 WL= WL + 1:WR = WR - 1

1330 WT= WT + 1:WB = WB - 1

1340 POKE 32,WL: POKE 33,WR

1350 POKE 34,WT: POKE 35,WB

1360 REM get into window

1370 VTAB WT + 1: HTAB WL + 1

1380 FINISH

1390 uuszu "CLOSRE WINDOW"

1400 REM restore everything as it was
1410 FOR W = 0 TO 5

1420 POKE 32 + W, WSIZE(W,WNUM)

1430 NEXT

1440 DISK "BLOAD WINDOW#" WNUM

1450 DISK "DRLETE WINDOW#";WNUM

1460 WNUM= WNUM - 1}

1470 FINISH
1480 FINISH

26

.!!!!!!!llll

Hincdows Dewo

HOwW, ey W INDOH| THIS IS WIHDOW MUMEER
AL W HTLHE 1 PRESS FETURN T COMTIN
= 15
:n.mm.zm.sm 23,36
S WIN
MBER
RETUR
ONTIM
WT LB
&, 14 |—

Applesoft uses locations 32-35 (decimal) to hold the size of the window
(for scrolling text and wrapping PRINT statements). BBASIC not only
supports text windows just like Applesoft, but it also handles HIRES
windows with two differences. TEXT windows use location 33 to hold the
window width. BBASIC HIRES windows use location 33 to hold the HTAB of
the right side of the window. The second difference is that text in a
HIRES window cannot scroll.

I also discovered a small error in the internal BBASIC window routioes
while working on this program. Line 1190 corrects the problem and
should be included in any program that uses HIRES windows.

If you run this program on a normal Apple it will be very slow. On a
SUPER Apple, though, windows open and close almost instantaneously.

Any one of the three recommended improvements will help a little.
Together, the speed will make your heart flutter. WARNING: If you ever
try a SUPER Apple, you will never be satisfied with anything less.

CHAIN

One of the biggest reasons for having a RAM disk is the BBASIC CHAIN
command. The syntax is CHAIN "PROGRAM.NAMER" where PROGRAM.NAME is the
name of & program that your program wants to run. (Note: CHAIN
requires Apple‘’s CHAIN program to be on your disk. It has been
licensed from Apple and comes on your BBASIC disk. You can also find
it on your DOS master.) The new program is loaded and executed just as
if you had run it with a DISK "RUN PROGRAM.NAMB" with one exception:
CHAIN maintains all the variables so they can be used by the second
program. If you break down your program into appropriate segments,
your program can be as large as your available disk space. And with
the SUPER Apple’s RAM disk, each segment will load with very little
decrease in performance. The RAM disk can also be used to hold arraye
larger than memory (using random access files). The file variables
will be slower than a normal array, but a SUPER Apple makes their use
very acceptable.

LOCAL VARIABLES

Occesionally someone writes to ask why BBASIC does not support local
variables. There are really two reasona. First, local variables make
interpreters very slow and memory-hungry. Second, and perhaps more
{mportant, I wanted to maintain total comspatibility with Applesoft’s
format for storing variables. Doing so lets you use most third party
Applesoft enhancements and utilities with BBASIC. Even with this
explanation, some people still want to use local variables. Since I
don’'t have any immediate plans for adding local variables to BBASIC, I
thought I would show you bow they cen be simulated. The basic premise
is to create a stack (the array S8) for saving and passing variables.
The following demo program shows a simple method for implementing this
idea. If two stacks were used (one for passing and one for saving
variables), the implementation might be a little easier, but this
should get you started (assuming you're interested in exploring local
variables).

27

l

BEREEEREREERERREED

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100

1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340

1350
1360
1370
1380
1390
1400
1410

This progras uses the fact that N!=N%(N-1)! to allow factorials to be
calculated with a subroutine that calls itself (something that normall
cenpnot be done unless the language supports locel variables). This Y
oxample is only meant to be an educational exercise, but with a little
work, you might develop a useful utility.

COMPILE

PERFORM "INITIALIZATION"

HOME

PRINT “N","Nt"

PRINT "-----—-—---=-=meoeoeo e "

FOR I =1 TO 10
§8= 88 + 1:88(SS) = I: REM PUSH NUMBER ON STACK
PERFORM "FACTORIAL"
NF= SS(SS5):85 = SS§ - 1l: REM PULL ANSWER FROM STACK
PRINT I,NF

NEXT

DEFINE "FACTORIAL"
REM THIS PROCEDURE WILL FIND THE FACTORIAL OF THE ITEM ON THE STACK AN
REM PLACE THE ANSWER BACK ON THE STACK IN ITS PLACE
REM ALL VARIABLES USED WILL BR SAVED AND RESTORED MAKING IT RE-ENTRAN1
§S= S8 + 1:SS(SS) = N: REM SAVE VARIABLE N
$8= S8 + 1:SS5(SS) = NF: REM SAVE VARIABLE NF
N= SS(SS - 2): REM GET NUMBER OFF STACK
WHEN N = 1 THEN
SS(SS- 2) = 1: RBM PUSH ANSWER ON STACK
ELSE
N= N - 1
88= S5 + 1
S8(SSs)= N
PERFORM "FACTORIAL"
NF= SS(SS):SS = SS - 1: REM GET ANSWER OFF STACK
NF= NF ¥ (N + 1): REM CALCULATE NEW ANSWER
§S(SS- 2) = NF: REM AND PLACE IT ON THE STACK
ENDWHEN
REM NOW RESTORE VARIABLES USED TO THEIR ORIGINAL VALUE
NF= SS(SS)
§8= S§ - 1
N= SS(SS§)
§8= 8§ - 1
FINISH

DEFINE "INITIALIZATION"

DIM SS(100)

§8= 1

REM SS() IS THR STACK

REM SS IS THE STACK POINTER

REM FOR PROGRAMS USING STRINGS, USER S$(S)
FINISH

VECTOR

I have tried to include in BBASIC st of the features you normally
will need. However, I realize that sometimes you will have an
application that requires something I have left out. Often that means
that you will have to write your own ampersand extensions. Since
BBASIC already uses the ampersand vector, I wanted a simple way for you
to interface new extensions. The BBASIC command VECTOR helps solve
this problem. For example, let’'s assume you write a routine that
starts at $300 (768 decimal). Let’s also assume that you normally call
your routine with the comsand “"& A,B,C" and that it determines which is
bigger (A or B) and puts the answer in the variable C. In order to use
your routine with BBASIC, you must do three thinga. First, your
program must load your routine. Second, you must use VECTOR to tell
BBASIC where to go when it finds a non-BBASIC ampersand cosmand.
Finally, you need to use a double ampersand when calling your routine.
The double ampersand ensures that Applesoft’s “"get character” pointer
will point to the second ampersand and your program can follow the

28]

normal rules for Applesoft ampersand extensions.
how these three requirements can be met.

2000 DISK "BLOAD NAME, A$300"
2010 VECTOR 768
2020 && A,B,C

Some extensions will use BBASIC reserved words and msy cause you
trouble. If you cannot get by without using reserved words, try to
solve the probles by PEEKing BBASIC’s vector and saving it. POKR in
your vector, execute your command, and restore BBASIC's vector. In
some cases, you might also need to turn off the BBASIC editor with a
DISK "IN$#0". You cen turn it back on with an &I inside your program.
This technique should allow any ampersand routine to work with BBASIC
as long as there are no memory conflicts.

29

The lines below show

.!!lll!ﬂ“ll!!

CHAPTER 8
HANDLING ERRORS

Applesoft has the ONERR GOTO statement to help your progras deal with
errors. Rather than duplicate the error-handling code, BBASIC makes as
much use of ONERR sas possidble. The first problems I had to fix was that
when an error occurs, ONERR transfers execution to a specified line
pumber. Since BBASIC's RENUM command does not alter any line numbers
in the body of the program, the use of RENUM would make ONERR very
difficult. Consequently, RENUM will not renumber any line numbers
above 59904 (I uee 60000). You should place each of your error-handling
routines at 60000 or greater.

APPLESOFPFT ONERR BUG

As indicated in Apple’'s documentation, there is a8 bug in the Applesoft
ROM's that prevents proper operation of the ONERR statement. BBASIC
fixes the problem with the command HANDLE.ERR. You should start each
of your error handling routines with this command. HANDLE.ERR also
turns off the ONERR flag. This means that any errors that occur inside
your routine will generate normal error messages. If you suspect
errors in your routine you could use another ONERR statement, though [
would generally discourage such complexity especially since it is not
necessary. Let’s examine some proper methods for handling errors.

You should not expect to handle all possible errores with one routine.
In fact, usually your program can test for most errors by using more
conventional means. For example, suppose your programs asks the user to
enter two numbers that are going to be used in a division problenm.
Instead of using ONERR to catch a division by zero error, your program
could simply prevent the user from entering a zero to begin with. The
following example shows how.

200 REPEAT

210 INPUT “ENTER TWO NUMBERS ";A,B

220 IF B=0 THEN PRINT “The 2nd number cannot be 0"
230 UNTIL B<>O

240 C = A/B

Even though the above example shows the best way for preventing

division by zero errors, let’s see how ONERR can be used to accomplish
the same thing. Let me emphasize that I would not use this method, but
this simple example does provide an effective way to demonstrate ONERR.

200 INPUT "ENTER TWO NUMBERS ";A,B
210 ONBRR GOTO 60000

220 C = A/B

230 BRR.OFF

60000 HANDLE.ERR

60010 PRINT "The 2nd number cannot be 0"
66020 INPUT "ENTER YOUR NUMBER AGAIN ";B
66030 RESUME

ERR.OFF

There are several items in this example that need discussion. First,
notice the new command ERR.OFF. [t cancels the last ONERR cosmand and
should always be used immediately after the line that might cause the
error. Proper bracketing of your program with ONERR-ERR.OFF statements
cen simplify error-handling because you can design different handlers
for each section of your progras.

30

RESUME returns control to the line that caused the error (line 220 in
this case). Sometimes it is desirable to tranefer control to some line
other than the offending one. Although Applesoft does not support such
a trensfer, you can do so with BBASIC. Make sure the potential error
will occur in a loop. Iostead of using RESUME in your error handler,
use the loop terminator to restart the loop. (The loop being restarted
must be active; that is, it sust be the inner loop if several loops are
sested.) The example below demonstrates this principle.

100 PRINT "ENTER NUMBERS Y0 BE DIVIDED"
110 PRINT "ENTER TWO ZEROS WHEN DONE"
120 ONEBRR GOTO 60000

130 LooP

140 INPUT "ENTER TWO NUMBERS ";A,B
150 EXITWHEN A=0 AND B0

160 PRINT "THE ANSWER I8 ";A/B

170 ENDLOOP

180 BEBND

60000 HANDLE.ERR
60010 PRINT "THR SECOND NUMBER CANNOT BE 0"
60020 ENDLOOP -

The ENDLOOP in the error-bendling routine will not indent properly
because of the absence of a corresponding LOOP, but it will execute
properly by returning control to line 130.

The proper use of error-handling routines can sake your programs more
user friendly. Use them carefully, though. I properly thought out
routines cen lock up your progras in an endless loop.

ERROR MESSAGES
In addition to the error messages of Applesoft, there are 3
new messages for BBASIC. They are as follows.

Unexpected Terminator (error # 17) means @
command such as ENDWHILE or ENDWHEN
was found without an appropriate
beginning command (such as WHILE or
WHEN) .

Terminator Missing (error # 18) means a
terminating command was expected
but not found.

Undefined Procedure (error # 19) means the
COMPILE comsmand was missing or the

name in the PERFORM command does not
match exactly a defined module.

(ProDOS BBASIC uses error codes 22,23, and 24.)

31

.

l

CHAPTER 9
TECHNICAIL SPEOIFICATIONS

Much of the material in this chapter will be of little interest to the

average BBASIC prograsser,
useful or even confusing.

use BBASIC.

before, 1 hope you will find it helpful.

AMPERSAND USEAGE

so don't be alarmed if you find it less than
You don’'t need any of this information to
For those of you who desire to go where no man has gone

Bach um>m—m noulwna is really an invisible ampersand (L) command. The
following is a list of the commands actually used for each deferred

BBASIC statement.

REPEAT &CONT HOME LASC
UNTIL &TO INVERSE &NORMAL
WHILE &FOR REVERSE &RECALL
ENDWHILE LRESUME NORMAL &CLEAR
ENDWHEN &STOP BELL LABS
ELSE &OR SOUND &LPEEK
EXITWHEN LNOTRACE COLLECT LRETURN
PERFORM &CALL INLINE &TRACE
DEFINE LDEF SORT &AND
FINISH &BND SWAP &ATN
COMPILE &STORE SEARCH &ONERR
CASE &ON INSTRS &GOSUB
VECTOR &USR BOXFILL &XDRAW
PRINT.USING &PRINT BOX 4GR
HSCRN &SQR RANDOMIZE &RESTORE
WIDTH. 40 L4 CHAIN &HGR2
WIDTH. 80 L8 ENDLOOP &RIGHTS
GET &AT LoOP &COS
INKEY LGET WHEN &IF
DISK &POP DEL.ARRAY LDEL
DRAW.USING LDRAW HANDLE.ERR LWAILIT
TEXT &SGN ERR.OFF LSTEP
HGR &FN RESTORE.HERE ASPEED=

MEMORY USAGE
The memory map for BBASIC is nearly identical to that of normal
Applesoft except that the starting point of the application prograa has

been moved up in memory.

($2520 for max.mem).
two reasons. First,

use that space.

BBASIC (2.7) resides from $800 to $4CA5

I chose to put BBASIC below the prograa area for

the casiest (and moast often used) place for you to
put ampersand extensions is below DOS at HIMEM, so I did not want to

Second, normal Applesoft programs using HIRBS graphics

have only 6K of workspace unless the application program is moved above
the HIRBS screen. When this is done, the 6K below the screen is wasted
because wn cannot be used for program or variable storage. Most of
BBASIC fits into this 6K space. Only 2K of BBASIC takes up memory that
could normally be used (the ares immediately following the HIRES
screen). This means you effectively get 8K of new code but you only
have to give up 2K to get it.

You may use page 3 just as you did with Applesoft. (I do use page 3
temporarily for some of the optimizing utilities.) BBASIC does use
some additional zero page locations. They are 0,1,2,3,4,5,6,7,8,19,1A
18 ,BB,EC,ED,FA,FB,FC,FD,FE, and FF. [should also point out that
BBASIC uses all of the Applesoft ROM routines, so you really have an
18K BASIC. After summing up all of the zero page locations used by

32

_

Applesoft, the monitor, DOS, and BBASIC, there are very few left over
for your use. Generally, unless you specifically know you will not
cause a conflict, you should only use locations 9,1B,1C,CE,CF,D6,D7,B3
EXK,BF, and ¥9.

The new locations chosen for BBASIC are not used by most programs. The
only known exception at this time is an early printer interface card
that used locations 0 and 1. The LLIST command fails with this card.

CUSTOM MODIFICATIONS

Occasionally, I hear from someone who dislikes my editor. Since
editors are one of the most personal aspects of computing, I want to
help you customize BBASIC to satisfy your requirements. At location
$C46 (version 2.7), there is a JSR instruction to $1910 which is the
address of the subroutine that accepts a line for BBASIC. You might
want to slter my editor or just change the JSR to some other routine
entirely. For example, if you use $FDI1B, then BBASIC will use the old
Apple ESC-IJKM editor. If you know how to determine the entry point of
your favorite editor (like GPLE, for example), you should be able to
use it with BBASIC. The only problems I expect you to have are with
MERGE and FPILE. The first eight instructions in my editor check to see
if & FILE or MERGE is in effect and & jump is made to adjust the
appropriate pointers. I suspect that you may want to place a JMP to
your editor at $1924 instead of modifying the JSR, but a lot may depend
on the editor you are trying to inetall. If you get something working,
send me your patches and I will pass thems on in a newsletter.

If you customize BBASIC for your use, PLEASE NO NOT GIVE IT TO ANYONR.
It will become impossible for me to help people if there are modified
versions floating around. I’'s more than willing to provide technical
information to those who need it, but you must help me by not

distributing your modifications.

For those of you who really want to get into BBASIC, let me provide you
with a starting point. The BBASIC (2.7) dispatch table starts at $FBB.
Each entry in the table contains three bytes. The first byte is the
token for the reserved word used by BBASIC as described earlier. The
next two bytes contain the address (less one) of the routine that
handles that cosmand. The first three bytes in the table are 83 71 11.
83 is the token for STOP which is used by BBASIC for ENDWHEN. The
address of the routine that handles ENDWHEN is $1171+1 or $1i72.
Remember, If you don’t understand any of this, just ignore it and be
happy you aren’t & die-hard computer freak. Luckily, BBASIC has nearly
every feature you will ever need, so customizing is usually
unnecessary.

80 COIL UMNS FOR THE II+

A few people with VIDEX or other 80 column boards have asked about
special support. Since I do not have any II+ 80 boards, I have not
tried any of the following suggestions. I did however design the video
interface for BBASIC in such a way that it would be easy to handle both
40 and BO columns on the Ile as well as text on the HIRES screen. The
secret is that I do not edit the screen memory (which is different in
all three cases). Inetead, I edit in the page 2 buffer and continually
reprint the buffer to the screen. This means (at least theoretically)
that sny 80 column card should be easily interfaced with BBASIC.

I'11 try to explain the requirements and then any of you familiar with
your 80 column card’s requirements can work on a patch. If you are
successful, please pass on the information and I’'11 put it in a
newsletter.

BBASIC already assumes that you turm on your card with a PR#3, which
should work for all cards. Turning the card off is another matter,
though. Many cards will not fully disconnect with a PR#0. Instead,
they require a special control code to be sent to thems with a print
statement. This is accomplished in BBASIC at address $48C7 which holds
a LDA ismediste instruction to pick up the code to turn off the card
(which is $15 for the Ille).

The only other problem I anticipate is that different cards use

a3

...l‘

'!!IIIIIIIII

different locations for their horizontal and vertical tabs. Most cards
(I have been told) use location $25 for the vertical tab just like the
40 column screen. This number is acquired by the LDA instruction at

$1959.

Horizontal tabs are often different from $24, which is used by the 40
column screemn. The [le uses $57B to hold its horizontal tab in the 80
column mode. The code from $1939 through $1949 ampoql»no- if BBASIC is
using 40 or 80 columns and loads the X register with either location
$24 or location $578, whichever is appropriate. Later, at $1B73, there
are four instructions that reset the locations to the proper horizontal

position.

I believe that these are the only places that might cause conflict with
other 80 column carda. All addresses above are for the GRAPHICS
version of BBASIC (both 3.3 and ProDOS 2.7). If you get your card
working, let me know and [will provide the addresses for the max

memory version.

PATCHING PRODOS BBASICOC

Always BLOAD a fresh copy of ProDOS BBASIC before you modify it and
BSAVE it before you run it. This is necessary because ProDOS BBASIC
has & few bytes of self-modifying code, and saving the code after
execution will csuse your computer to hang on the next run.

34

CHAPTER 10
OTHER BBASIC PRODUCTS

BBASIC comes in two formats, 3.3 DOS and ProDOS. Both versions look
alike to the user, but there are significent internal differences.
They sell for $25 each or $39.956 for both versions together (plus $2
shipping). If you have purchased either version, you may get the other
for $15 plus $2 shipping. Because 1 feel that you should be able to
try software before you buy it, I allow unmodified BBASIC diskettes to
be distributed to your friends. YOU MAY NOT, HOWEVER, DISTRIBUTE ANY
WRITTEN DOCUMENTATION ABOUT BBASIC (including this manual) in any form
—-including magnetic media. If your friends like and plan to use
BBASIC, please encourage them to become a registered owner. They can
do so by ordering this manual (end all the back newsletters) for

$19.50. Remesber, registered owners may receive free newsletters and
purchase special BBASIC products such as those described below. REven
though I allow BBASIC diskettes to be distributed as sharewasre, you may

not do so with any of the other BBASIC programs offered through me.
BBASIC took thousands of hours to write. Please confirs wy trust by
honoring the above conditions.

BBASIC TEXTBOOK

One of the most popular BBASIC products is a text book called
Structured Prograsming Nith BBASIC. 1t is 142 full-sized pages and
spiral bound. Although it assumes you know very little about
programming, it takes you through such subjects as sorting, searching,
disk files, graphics, and even how to write your own "TINY" interpreter
and compiler. It is written in an informal, easy-to-read style with
the figures imbedded in the text for easy reference. It sells for $30
plus $3.50 shipping ($10 foreign) and thet includes a diskette with all
the example programs typed in for you. The diskette presently only
comes in 3.3 DOS format. If you don't have 3.3 BBASIC add $5 to your
book order and I'1ll include a copy on the book diskette. I don’t feel
I have to apologize for the quality of the book, but you should know
that all the text and figures were generated with my cosputer and the
book was printed at my local print shop. As with all sy products, it
comes with a money-back guarantes.

UTILITY DISKETTE

A special utility diskette is available for $20 plus $2 shipping.

You may specify ProDOS or 3.3 or get both for an additional $5. One of
the items it contains is a character editor so you can create your own
characters for the HIRES BBASIC character set. The figure below shows
a screen dump from the editor.

36

!IIII!!II!IIIII|

— B.BASIC CHARACTER GEHERATOR-EDITOR —

CHARACTER GRID EDIT GRID
T3 &P |
RN

2 1 YBENS
Sa788::<237 A
woomnwruuznzn
OPQRSTUVLIXYZE
VuMH Mro&m*Mﬂ

mno "s
ﬂhxcﬂh_wmi

FILE: BOLD TYPE

KEY] CHR$¢(6%)

C—-CREATE L-L

-0DELETE S-

Q-REL a3

In addition to the editor itself, you also get several new character
sets ready to be used in your progress. You get ¢« BOL. D set, an
ITALICS set, and an UNDERLINE set. You even get several combination
sets such as NORMAL/BOLD and NORMAL/ITALIC. These combination sets are
upper case only because the lower case lettera have been replaced with
the alternate set. They make it very easy to mix typestyles in your
BBASIC programs. If you have a Ile, IIc, or GS, these sets are as easy
as typing lower case letters. II+ users can access these sets with a
POKE 243,32. After the POKE, all HIRES PRINT statements will be in
lower case {(or bold or italic)., Use POKR 243,0 (or TEXT) to return to
the normal state. The figure below shows a screen dump of the pre-
defined character sets.

THIS IS THE CGE EXAMPLE. & LIST OF THIS
Progtram will show you how we chanwed
STELES OF T¥RE, ITF $04 Y55 THS
SUBROUTINE "STYLE' JUST AS UWE HAUE IT

SHOULD HAUE NOQ PROELEMS IMN SWITCHING

SETS. THIS IS NOT NECESSARILY THE
EASIEST WAY OF INTERLACING SETS BUT

The utility disk also contains a set of programs called SHRINK, EXPAND,
and SHORTEN. You may be familiar with optimizing programs for
Applesoft that shrink programe by combining many statements on one
line. These programs won't work with BBASIC because of the special
rules about multi-statement lines. The utilities disk has two SHRINK
programs that can optimize your BBASIC programs. SHRINK combines lines
when possible, but it does not remove remarks from your progras.
SHRINK.REM combines lines and removes all REM statements. It is
important to have both choices available to you because the diskette
also containe an EXPAND program that restores a shrunk program to its
original size so it can be edited. All three of these programs are
very easy to use. Just BRUN the one you need, and the prograa in
memory will be altered in a couple of seconds. That’s all there is to

36

l

it. You can shrink or expand at any time, without saving or loading or
anything. Most programs shrink to about 80X of their original size and
run a little faster. If you always shrink before saving, your disks

will seem 20% larger.

The last program on the utilities disk is SHORTEN. It shortens

procedure names. As you know, all the cheracters in a procedure name

are significant which encourages you to use long meuningful names.
Unfortunately, very long names take up memory and slow execution.
SHORTEN is & BBASIC module that can be merged into your progranm.

converts all procedure names to AA, AB, AC BA, BA etc. When s
program is both shortened and shrunk, it can be reduced in size as much
as 50% (I average about 30%). You probably won’t want to shorten all

your programs, but if you need more space for your variasbles then
can be invaluable.

As stated earlier, all four of these utilities can be purchased by

registered owners for only $20 plus shipping. As with all BBASIC

It

it

products, the diskette is unprotected. I think you will find thea a

useful addition to your BBASIC library.

PROCEDURE DISKETTES

If you develop general purpose procedures (such as those discussed in
Chapter 4) and would like to share them with others, please send thenm
to me on diskette. Use REM statements to document your routine and add
an example program if appropriate. When 1 get enough routines I will
make a diskette available to registered owners for a small fee. If you

have submitted a routine, you will get a free copy of the diskette.

of the writing of this manual I do not have enough routines. When I do

I will ennounce the diskette in one of the newsletters.

SCHOOLS NEED BBASIC

Since so many schools have purchased at least .one copy mm BBASIC, I eam
setting up a special quantity price schedule and _—noannan.unnuannlnaou.
If your school would like to license BBASIC for their machines or would be

As

intereated in making special BBASIC packages available to the students,

then write and request a school price schedule.

Products and Prices

BBASIC (3.3 or ProDOS)......covvevnenoses. . .$25.00
Upgrade to other version..... ...$15.00
Both versions.......coecuceeeens$39.95
Registration and newsletters (no disk)......$19.50
Charecter/Editor & Shrink/Expand............$20.00
Final Draft of text book (3.3 DOS only).....$30.00

Add $2 ($5 outside the U.S) shipping and handling
for all non-book orders.

Add $3.50 ($10 outside the U.S.) for each order
than includes one or more books.

Mail your check to:
John Blankenship, P.O. Box 47934 Atlanta GA 30362

QUANTITY DISCOUNTS AVAILABLE FOR SCHOOLS AND USER GROUPS

37

CHAPTER 11
COMMEROIAL PROGRAMS

1!‘

If you write e commercial program using BBASIC, you may include a copy
of the BBASIC system on your diskette as long as you follow these
rules.

1. Your diskettes must include all of the programs from the BBASIC
system ster.

2. The BBASIC opening menu must be available so that the user can
select and read the BBASIC documentation and advertisement asking
them to become registered owners for $19.850.

3. Your documentation must state why you chose to write your program
in BBASIC as opposed to Applesoft end encourage the
users to become registered if they wish to use BBASIC for
purposes other tham your progras.

4. If you wish to have a turn key systes that does not provide
the advertisement information, please check with me about a
low cost licensing agreeaent.

8. You must send me a copy of your program and documentation.

|

This su
more details refer to the earlier chapters. Ip addition to these
commands, you can use any Applesoft coamand except for HGR2.

CHAPTER 12
SUMMARY OF COMMANDS

ary of BBASIC commands can serve as a quick reference. For

Modular Construction

DEFINE Used to define the beginning of a module
(subroutine).
Syntax: DEFINE "NAMB"
Quotes are only required if the name contains
a reserved word, but are always recommended.
NAMES may not contain commas or colons.

FINISH Used to mark the end of a module. Only one
FINISH is allowed per module.

PERFORM Causes the execution of a module.
Syntax: PERFORM "NAME"

COMPILE Must occur in the program before the first
PERFORM. Causes a table of addresses of
modules to be created. If left out of a prog-
ram then PERFORM may cause strange errors.

CONTROL STRUCTURES

Because of the many loop structures of BBASIC, any program
can be written without GOTO’s. GOTO will execute properly
so that Applesoft programs will run under BBASIC, but the
use of GOTO has been discouraged by having RENUM not support
it.

WHILE - ENDWHILE (check at beginning of loop)
Used to create a WHILE loop.
Syntax: WHILE A$=B$+Cs
body of
loop
ENDWHILE

REPEAT -~ UNTIL (check at end of loop)
Used to create a UNTIL loop.
Syntax: REPEAT
body of
loop
UNTIL A=B

LOOP - ENDLOOP - EXITWHEN
Used to create an infinite loop or one that
can be exited at any point. EXITWHEN is
optional and any number of EXITWHENs may
be used if needed.
Syntax: Loopr
body of
EXITWHEN A$=-"DONER"
loop
ENDLOOP

o

WHEN - BLSE - ENDWHEN
Expanded version of the IF statement.
Syntax: WHEN A+B THEN
do this if
true
ELSE
and this if
false
ENDWHEN
note:Applesoft’'s IF is still valid. IF should
not be used however, with the PERFORM
statement. Use WHEN without ELSE as shown

below.
WHEN A=B THEN
PERFORM "NAME"
ENDWHEN
CASE Allows modules to be PERFORMed based on the
value of a variable (similar to Applesoft's
ON A GOSUB).
Syntax: CASE A; "NAMEL", "NAMB2",etc

Note: All control structures may be nested in any
combinations. Actual depth allowed is determined by the
stack.

HIRES GRAPHIC EXTENSIONS

HGR - TEXT

Similar but not identical to Applesoft HGR
and TEXT. HGR ellows graphics and text but
no scrolling. HGR sets color to 3 and does
not clear screen. TEXT automatically
perforss a HOME. Full use of all PRINT and
TAB commands are supported in HGR. (HGR2 is
not supported.)

NORMAL - INVERSE - HOME - REVERSE
Provide the NORMAL, INVERSE, and HOME func-
tions in both TEXT and HGR modes.
REVERSE prints in the reverse color of the
background (HGR mode), but should not be used
in the immediate mode. FLASH will produce
strange characters if used in the HGR mode.

DRAW.USING
Draws based on a string variable that contains any
of the following characters.
- move up
- move down
- move left
- move right
- move up and right
move down and right
- move down and left
- move up and left
- ON, plot with moves (default)
- OFF, don’t plot, just move
- cause all future plots to be
done from one to nine times.
System remains in this mode
till a new nuamber is found.
SPACR - may be used to improve
readability
note: Draw astarts from the last HPLOT or the last
DRAW.USING and uses the last color plotted.
After a HOME, DRAW.USING starts in the center
of the screen. Every DRAW.USING starts in
the ON mode automatically.
Syntax: A$="6URDL FIR3D NIJKM"
DRAW.USING AS
REM draws a square and a diamond 3 dots

CWMEEIRCmDID S
1

o
i

apart. The square will have 6 dote
* per side and the diamond will have 3.
40

BOX - BOXFILL

Syntax:

Creates the outline of, or a solid box of
the last color used. Specify the coordinates
of the upper left hand and lower right hand
corners of box.

Box 20,25,100,150

BOXFILL X,Y,W,2%Z

OTHER GENERAIL COMMANDS

GET

INKERY

INLINE

HSCRN

MERGE

FILE

RENUM

LIST

LLIST

INSTRS

Appears exactly like Applesoft’s GET, but
works with my line editor. Also works with 80
columns, but cursor will always appear on an
even column regardless of real position.

If a key is pressed it performs a GET,
otherwise execution continues without action.
Syntax: INKEY AS

Just like INPUT except that commas and
quotes are allowed in the input data. (You
may not specify a prospt as with INPUT.)
Syntax: INLINE AS

Reads on/off status of a HIRES coordinate.
Syntax: HSCRN X,Y,Z
(Z=1 if point X,Y is ON, Z must be REAL)

Adds a program on disk to the program in
memory. Line numbers are not altered,
use RENUM before editing. (a space msust
occur between MERGE and "NAME")

Syntax: MERGE "NAME"

Saves a named subroutine from the progranm
in memory to the disk. As with MERGE, a
space must separate FILE and "NAME"
Syntax: FILE "NAME"

Renumbers program starting at 1000 by 10's
Syntax: RENUM

Lists the program starting from a line
number, a module NAME, or the beginning
of program. (If you need to list one line
use EDIT.) ESC or RETURN stops listing,
any other key will pause. Listings are
automatically indented based on first
command on a line (if you use a FOR-NEXT
on the seme line, start it with a colon).
All BBASIC commands must be first on the
line to list properly (a special pecking

program is under developement). LIST will
turn off any slot before printing is
actually started. If you reset before

a list you will see the & commands.
Syntax: LIST or LIST 100 or LIST "NAME"
Any key will pause, RETURN or ESC to ABORT.

Same as LIST but sends output to slot 1
Finds the Nth occurance of X$ in ¥$ and
places position found in the REAL variable
C. C will = 0 if no match is found.
Syntax: INSTRS$ N,Xs$,Y$,C

41

- ~
. A

'IIII

nOFFwnd Forces a fast garbage collection if
available memory is less than IlK.

EDIT Presents lines for altereation starting at
the point specified by the cosmand. Uae
ESC or CTL-X to abort
Syntax: EDIT or EDIT 100 or EDIT "NAME"

RANDOMIZE Reseeds the randoa number generator.
Generally use RANDOMIZE only once in a
program (valid after any input).

DISK Allows DOS commands without CHR$(4).
(you'll be surprised at how much you will
like this command after you used it.)
Syntax: DISK "OPEN NAME"

DISK "PR#1"

CHAIN Runs a program from the disk without des-
troying the values of present variables.
Requires Apple’s (TM) CHAIN program to be
on your diskette. CHAIN can be found on
a DOS 3.3 master diskette.

Syntax: CHAIN "NAME"

SWAP Swaps the values in any two variables of
same type.
Syntax: SWAP A,B

VECTOR Sets up address to jump to other & programs.
Jump will occur if command neme is different
than those of BBASIC.

Syntex: VECTOR 8192

BELL Produces the apple bell tone.

SOUND Produces sounds of Duration D (0-127), Fregq
F (0-191) and Bffect B (0-255). Effect of
0 gives normal tone. Duration gives same
length for all frequencies Effects close
to | and 255 are the most interesting.
Syntax: SOUND D,F,RE

PRINT.USING Rounds off numbers and prints to desired
decimal places. Use # to indicate field
length. The mask may be a string variable.
Syntux: PRINT.USING "S##,##8.88" ;X

DEL.ARRAY Deletes an array to free memory or allow
it to be re-dimensioned.
Syntax: DEL.ARRAY Bs$

SORT Sorts a 1 or 2 dimensional array into
ascending order. Two dimensional arrays
are sorted on the lst column, and the other
columns are ordered with the lst. First
column is the 0 column in the array. (And
don't forget the 0 elements).

Syntax: SORT As

RESTORE.HERE Sets start of DATA read pointer to
the present line. Allows each procedure
to have its own DATA statements.

SEARCH Searches the array B for the Nth occurance
of the item X. Position found is placed
in the real variable C. For multi-
dimensional arrays the search is in the
order of the dimensions, so use a formula to
convert "position" to "row-column® String
arrays will match if the itea vo»:n searched
for, matches the left hand side of an array
element.
Syntax: SEARCH N,X,B.C

az

WIDTH.40 and WIDTH. 80

These commands select 40 and

80 column modes on Ile and IIc only. HTAB
will not work past 40 columns (use POKE

1403,P0S as Apple recommends).
it will be the default for the
HGR text will always be 40

is selected,
TEXT command.

columns.

BRR.OFF Turns off ONBRR GOTO

Once a mode

HANDLR.ERR Turns off ONERR and fixes ONERR bug.
Should be used to start the module that

&I, 7,8,

handles er

10,29

Accelerator cards,
Ampersand (&), 2,7,

Applesoft, 1,5,7,10,

Autonums,

‘9

BELL, 18,42

BOX, BOXFILL, 17,41
CASE, 12,40

CHAIN, 27,42
Character Editor, 3

‘COLLECT,
COMPILE,

20,42
7,39

Compiler, 1,25

Control

structures,

DEFINR-FINISH, 5,39
DBL.ARRAY, 20,42
DISK, 19,42
DRAW.USING, 5,17,40

EDIT, 9,
Bditor,
Errors,

10,42
2,4,5,7-10
Error handl

FILE, 13,41 2¢
FLASH, 16

GEBT, 19,

a1

QoTO, GOsuB, 7,9,11
Graphics, 2,4,16,17
Hardcopy, see PR#,

HGR, 16,
HOMB, 6,

40
16,40

HSCRN, 18,41

INS®, 29

INKRY, 19,41

INLINE,
INSTRS,

19,41
24,41

Interpreter, 1,25

INVERSE,

16,40

rors.

INDEX

25
10,32
11

65,36

2,6,39,40

ing, 20,30,31

see LLIST, 5

Library routines, see Modules, 13
LisTt, 5,9,41

LLIST 5,10,41

Local variables, 27,28
LOOP-EXITWHEN-ENDLOOP, 11,39
Memory useage, 2,32,33

MERGE, 13,41

Modules, 12,13,39

Newsletters, 3

NORMAL, 16,40

PERFORM, 5,66,13,39

PR®, 5,10,19

PRINT.USING, 20,42

RAM drives, 25

RANDOMIZE, 20,42

RENUM, 9,41

REPEAT-UNTIL, 12,39

Reset, 7,10

RESTORR.HERE, 15,42

REVERSE, 16,17,40

SBARCH, 24,42
Self-addressed-stamped-envelope, 3
SHRINK/BXPAND/SHORTEN, 36,37
SORT, 21-23,42

SOUND, 18,42

Structured programming, 2,3,11-15
Structured Programming With 88Asic, 3,35
SWAP, 19,42

Tabs, 16

TRXT, 6,7,16,40

VRCTOR, 28,42

WHEN-ELSB-ENDWHEN 5,6,11,12,40
WHILE-ENDWHILE, 12,39

WIDTH.40, WIDTH.80, 16,33,43
Windows, 25-27

43

VGnRensmp

BASIC

FOR TAN APPLER [1e, [le, Iiw, and G&

copyright January 1984
by John Blankenship
(diskette and manual modified 1985, 1986, 1987)

P.O. BOX 47934 Atlanta GA 30362

No part of this document may be reproduced in any form.
Apple and Applesoft are trademarks of Apple Computer Inc.
You may freely give unaltered copies of BBASIC to others

but
PLEASE do not distribute this documentation.

I believe LOW prices are the way to beat piracy.
HELP PROVE ME RIGHT

CHAPTER TITLE PAGE
1 Introduction to BBASIC 1
2 Tutorial 4
3 The RBRditor 8
4 Modular and Structured Programming 11
5 Text, Graphics, and Sound 16
6 Faster and ERasier 19
7 Power Users 25
8 Handling Brrors 30
9 Technical Specifications 32
10 Other BBASIC Products 35
11 Commercial Programs 38
12 Summary of Commaands 39

DISCLAIMER

BBASIC has been thoroughly tested, but programs of this size and
complexity can always have errors. If you find an error you can
duplicate, please send me a diskette copy of your progrem (include your
Moqunoanﬁn BBASIC) and a description of the problem and I will attempt
o x .

I assume no responsibility for any damages, including lost profits or
other incidental or consequential damages, arising from the use of, or
inability to use, BBASIC. My sole responsibility will be to replace
the product or refund the purchase price, whichever is appropriate.

It is possible that there will be updates, additions, and utilities
avajlable for BBASIC. Information about these topics, as well as
helpful hints, can be found in the BBASIC newaletters. This update of
the manual includes the informetiom fowad ia the first six newsletters.
Registered owners cen receive free newsletters vu keeping a self-
addressed stamwped emvelope on file with me as described io Chapter 1.

